
© 2004, Tom Duff and George Ledin Jr 1

Lectures
Transparency Case Study

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

How is transparency achieved in
OpenGL?

• In OpenGL, we use
blending of alpha value
(opacity value) to create
a translucent fragment
that lets some of the
previously stored color
value “show through”.

© 2004, Tom Duff and George Ledin Jr 3

Enable/Disable blending of color

• To enable transparency, we need to
explicitly enable blending:
– glEnable(GL_BLEND)

• To disable blending:
– glDisable(GL_BLEND)

© 2004, Tom Duff and George Ledin Jr 4

Alpha Value
• void glClearColor(GLclampf red, GLclampf green,

GLclampf blue, GLclampf alpha)
– Specify values for the color buffer

• void glColor4f(GLfloat red, GLfloat green, GLfloat
blue, GLfloat alpha)
– Specify colors

0 <= alpha <= 1
Transparent opaque

© 2004, Tom Duff and George Ledin Jr 5

What happens when blending is enabled?
• When blending is enabled, the alpha

value is used to combine the color
value of the fragment being processed
with that of the pixel already stored in
the framebuffer.

– Blending occurs after the scene has
been rasterized and converted to
fragments, but just before the final
pixels are drawn in the framebuffer.

• Without blending, each new fragment
overwrites any existing color values in
the frame buffer, as if the fragment
were opaque.

• With blending, one can control how
much of the existing color value should
be combined with the new fragment’s
value.

Blending Model

© 2004, Tom Duff and George Ledin Jr 6

Case Study 1
a real world scenario

• Scenario:
– There’s a yellow circle and

a blue circle.
The yellow circle is 25%
transparent. The blue circle
is 75% transparent.

• Question:
– When the yellow circle is in

front of the blue circle, what
do we see, Choice A or
Choice B?

• Choice A

• Choice B

© 2004, Tom Duff and George Ledin Jr 7

Case Study 1 – Answer is A
Reason: Because yellow circle is more opaque, therefore we see

more of the yellow and less of the blue.

• Scenario:
– There’s a yellow circle and blue

circle.

• The yellow circle is 25%
transparent. The blue circle is
75% transparent.

– This means that the yellow circle
is 75% opaque and blue circle is
25% opaque.

• If the yellow circle is in front of the blue
circle, only 25% of the blue blends with
75% of the yellow. (Choice A)

• If the blue circle is in front of the yellow
circle, only 25% of yellow blends with
75% of the blue. (Choice B)

• Choice A

• Choice B

© 2004, Tom Duff and George Ledin Jr 8

The source and destination factors
• During blending,

source is the color
value of the incoming
fragment.

• Destination is the
currently stored pixel
value.

Blending Model

© 2004, Tom Duff and George Ledin Jr 9

How does OpenGL blend the source and destination color values?

• Assume:
– Source Color: (Rs, Gs, Bs, As)
– Destination Color: (Rd, Gd, Bd, Ad)

• Step 1:
– Specify the source and destination factors.

• Let source destination blending factors be:
– (Sr, Sg, Sb, Sa)

• Let destination blending factors be:
– (Dr, Dg, Db, Da)

• Step 2:
– Combine the corresponding components of source and destination.

• Final blended RGBA values are given by:
– (RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

• Note: Each of these quadruplets is clamped to [0,1]

© 2004, Tom Duff and George Ledin Jr 10

Blend Function
•void glBlendFunc(GLenum sfactor, GLenum dfactor)

• dfactor
– Specifies how the red, green,

blue and alpha destination
blending factors are computed.
Eight symbolic constants are
accepted:

• GL_ZERO
• GL_ONE
• GL_SCR_COLOR
• GL_ONE_MINUS_SRC_COLOR
• GL_SRC_ALPHA
• GL_ONE_MINUS_SRC_COLOR

,
• GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA.

• sfactor
– Specifies how the red, green, blue

and alpha source blending factors
are computed. Nine symbolic
constants are accepted:

• GL_ZERO
• GL_ONE
• GL_DST_
• COLOR
• GL_ONE_MINUS_DST_COLOR
• GL_SRC_ALPHA
• GL_ONE_MINUS_SRC_COLOR
• GL_DST_ALPHA
• GL_ONE_MINUS_DST_ALPHA
• GL_SRC_ALPHA_SATURATE

• Blending factors lie in the range [0,1]. After the color values in the
source and destination are combined, they’re clamped to the range
[0,1].

© 2004, Tom Duff and George Ledin Jr 11

Source and Destination Blending Factors Table
sFactor=(Sr,Sg,Sb,Sa) or
dFactor=(Dr,Dg,Db,Da)

© 2004, Tom Duff and George Ledin Jr 12

Case Study 2
Source and Destination Blending Factors

• Case Study Setup:
– A yellow circle of radius 2, centered at (-1,0,0)
static void drawLeftCircle(void){

/* draw yellow triangle on LHS of screen */
glColor4f(1.0, 1.0, 0.0, 0.75); //yellow, alpha=0.75
circle(-1,0,2); //x=-1,y=0,radius=2
}

– A blue circle of radius 2, centered at (1,0,0)
static void drawRightCircle(void){

/* draw yellow triangle on LHS of screen */
glColor4f(0.0, 0.0, 1.0, 0.75); //blue, alpha=0.75
circle(1,0,2); //x=1,y=0,radius=2
}

• Question:
– If we change the sFactor and dFactor of

glBlendFunc(sFactor, dFactor), what will be
the blending effect?

© 2004, Tom Duff and George Ledin Jr 13

Init blending function in main
/* We will change sFactor and dFactor values later on to test the blending

effect.*/

//(Sr,Sg,Sb,Sa)=(As,As,As,As)= (0.75,0.75,0.75,0.75)
sFactor = GL_SRC_ALPHA;

//(Dr,Dg,Db,Da)=(1-As,1-As,1-As,1-As)= (0.25,0.25,0.25,0.25)
dFactor = GL_ONE_MINUS_SRC_ALPHA;

/* Initialize alpha blending function. */
static void init(void)
{

glEnable (GL_BLEND);
glBlendFunc (sFactor, dFactor);
glShadeModel (GL_FLAT);
glClearColor (1, 1, 1, 1); // white and opaque background

}

© 2004, Tom Duff and George Ledin Jr 14

Test Case A
Let sFactor = GL_SRC_ALPHA, dFactor = GL_ONE_MINUS_SRC_ALPHA

Draw blue circle first, yellow second.

void display() {
drawLeftCircle(); // yellow circle
drawRightCircle(); // blue circle
}

• Predicted final blending value based on formula:
(Rf,Gf,Bf,Af) = (RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

– (Rs,Gs,Bs,As) = (1,1,0,0.75) //yellow, semi-transparent

– (Rd,Gd,Bd,Ad) = (0,0,1,0.75) //blue, semi-transparent

– sFactor = GL_SRC_ALPHA
• (Sr,Sg,Sb,Sa) = (0.75,0.75,0.75,0.75)

– dFactor = GL_ONE_MINUS_SRC_ALPHA
• (Dr,Dg,Db,Da) = (1-0.75,1-0.75,1-0.75,1-0.75) = (0.25,0.25,0.25,0.25)

• Final predicted blending value (Rf,Gf,Bf,Af) = (0.75,0.75,0.25,0.75)

© 2004, Tom Duff and George Ledin Jr 15

Use our predicted final blending value to draw an object
(circle) and compare its color with the blended color

of the blue and yellow circles.

• In the preceding slide, our predicted final blending value was
(Rf,Gf,Bf,Af) = (0.75,0.75,0.25,0.75)

• Function to draw a circle centered at (0,3,0) with radius of 1.
static void drawTestCircle(void)
{
glColor4f(0.75, 0.75, 0.25, 0.75);
circle(0,3,1);
}

• Display the test circle together with two intersecting circles
void display() {
drawTestCircle(); // draw test circle with predicted color
drawRightCircle(); // Destination: blue circle
drawLeftCircle(); // Source: yellow circle
}

• Result:
– The predicted color shown in the test circle matches the final blended color

of the yellow and blue circles.

© 2004, Tom Duff and George Ledin Jr 16

Test Case BLet sFactor = GL_SRC_ALPHA, dFactor =
GL_ONE_MINUS_SRC_ALPHA

Draw yellow circle first, blue circle second.

void display() {
drawLeftCircle(); // yellow circle
drawRightCircle(); // blue circle
}

• Predicted final blending value based on formula:
(Rf,Gf,Bf,Af) = (RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

– (Rs,Gs,Bs,As) = (0,0,1,0.75) //blue, semi-transparent

– (Rd,Gd,Bd,Ad) = (1,1,0,0.75) //yellow, semi-transparent

– sFactor = GL_SRC_ALPHA
• (Sr,Sg,Sb,Sa) = (0.75,0.75,0.75,0.75)

– dFactor = GL_ONE_MINUS_SRC_ALPHA
• (Dr,Dg,Db,Da) = (1-0.75,1-0.75,1-0.75,1-0.75) = (0.25,0.25,0.25,0.25)

• Final predicted blending value (Rf,Gf,Bf,Af) = (0.25,0.25,0.75,0.75)

© 2004, Tom Duff and George Ledin Jr 17

Use our predicted final blending value to draw an object (circle) and compare the
color with the blending color of the yellow and blue circles.

• In the preceding slide, our predicted final blending value was
(Rf,Gf,Bf,Af) = (0.25,0.25,0.75,0.75)

• Function to draw a circle centered at (0,3,0) with radius of 1.
static void drawTestCircle(void)
{
glColor4f(0.25, 0.25, 0.75, 0.75);
circle(0,3,1);
}

• Display the test circle together with two intersecting circles
void display() {
drawTestCircle(); // draw test circle with predicted color
drawLeftCircle(); // Source: yellow circle
drawRightCircle(); // Destination: blue circle
}

• Result:
– The predicted color shown in the test circle matches the final blending color

of the yellow and blue circle.

© 2004, Tom Duff and George Ledin Jr 18

Conclusion drawn from Test A and Test B
Test b• In both Test A and B, we use the same

blending function:

– glBlendFunc (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

• The differences are:

– In Test A, we draw first the blue, then the
yellow circle.

– In Test B, we draw first the yellow, then
blue circle.

• Tests A and B display different blending
effects.

• This shows that the order in which
objects are defined makes a difference in
the final color blending result.

Test a

Blending Model

© 2004, Tom Duff and George Ledin Jr 19

Case 3
Blending is dangerous and has many artifacts

Study Case:

• A cube emitting blue light.

– One cube emitting blue light.
GLfloat mat_emission[] = { 0.0, 0, 1, 1 }; // blue
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue

• When light shines on the cube, the material reflects red diffuse color of alpha value 0.6.
GLfloat mat_transparent1[] = { 1, 0, 0, 0.8}; // red 0.8 diffuse
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent1);//red light

• One light shining in the –Z direction
static void init(void)
{
GLfloat position[] = { 0, 0, 1.0, 0 }; //light shining headon

glLightfv(GL_LIGHT0, GL_POSITION, position);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);

}

• Goal::
– We will change the backgournd, the blending function to see what kind of artfact we can

get. We will not be going through details as to what these artifacts are.

– The purpose of this study case is to show how dangerous blending can be☺

One of the artfacts

© 2004, Tom Duff and George Ledin Jr 20

Case 3, A
Object is visible with black background but disappears with white background

White background
SetBackground(1,1,1,1);void display(void) {

GLfloat mat_zero[] = { 0.0, 0.0, 0.0, 1.0 }; //black
GLfloat mat_transparent[] = { 1, 0, 0, 0.6}; //red 0.6 diffuse
GLfloat mat_emission[] = { 0.0, 0, 1, 1 }; // blue

SetBackground(1,1,1,1);
glRotatef (15.0, 1.0, 1.0, 0.0);
glRotatef (30.0, 0.0, 1.0, 0.0);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent);//red 0.6 diffuse
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);// make the depth buffer read only

// while drawing the translucent objects
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glCallList (cubeList);
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);

glFlush();
}

Black background
SetBackground(1,1,1,1);

Note: This artifact can be noticed when using
glBlendFunc (GL_SRC_ALPHA, GL_ONE);

However, when using glBlendFunc (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);
it does not matter whether the background is black and white; the cube is always
viewable.

© 2004, Tom Duff and George Ledin Jr 21

Case 3, B
Blending with depth buffer read-only vs depth buffer writable.

With depth buffer read-only
glDepthMask (GL_FALSE);void display(void)

{
GLfloat mat_zero[] = { 0.0, 0.0, 0.0, 1.0 }; //black
GLfloat mat_transparent[] = { 1, 0, 0, 0.6}; //red 0.6 diffuse
GLfloat mat_emission[] = { 0.0, 0, 1, 1 }; // blue

SetBackground(0,0,0,1);
glRotatef (15.0, 1.0, 1.0, 0.0);
glRotatef (30.0, 0.0, 1.0, 0.0);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent);//red 0.6 diffuse
glEnable (GL_BLEND);
glDepthMask (GL_FALSE);// make the depth buffer read only

// while drawing the translucent objects
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glCallList (cubeList);
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);

glFlush();
}

With depth buffer writable
glDepthMask (GL_TRUE);

Note: This artifact is noticed when using
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

However, combinations of all possible values for glBlendFunc were not attempted.

© 2004, Tom Duff and George Ledin Jr 22

Lesson from Case 3
• Blending is dangerous with mixed with light

whose alpha value is < 1 (transparent).

• In order to avoid artifacts, you need to know
exactly what you are doing.

© 2004, Tom Duff and George Ledin Jr 23

Case 4
How does the alpha value affect the object’s color?

• Study Case:
– There are three cubes emitting blue

color.

– If light is shine on the left, it will present
red diffuse color of alpha value, such
as 0.6 transparency.

– If light is shined on the middle, it will
present red diffuse color of alpha value,
such as 0.8 (transparency).

– If light is shine on the right, it will
present red diffuse color of alpha = 1
(solid).

• Question:
– How does the alpha value of light affect

the color of the cube?

© 2004, Tom Duff and George Ledin Jr 24

Case Study 4, continued …

Setup common traits for the three cubes to be rendered
static void init(void)
{
//dark grey specular light
GLfloat mat_specular[] = { 0.1, 0.1, 0.1, 1 }
// concentrated specular spot
GLfloat mat_shininess[] = { 127 };
GLfloat position[] = { 0, 0, 1.0, 0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
//light shining head on
glLightfv(GL_LIGHT0, GL_POSITION, position);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0); //one light source
glEnable(GL_DEPTH_TEST);

// create display list for a cube to be used later
cubeList = glGenLists(1);
glNewList(cubeList, GL_COMPILE);
glutSolidCube (0.6);
glEndList();

}

• Set up light position (towards –Z direction)

• Set up material’s specular property (dark grey), and
shininess (very shiny)

– Since our goal is not to study material’s
specular property, therefore, we minimize the
specular color by setting it to dark grey (very
negligible, and we set specular spot on the
object by setting the material shininess to
127, very shiny.

• Create display list of the cube

– This step is not required. However, since we
will render the same cube three times to
display three cubes, using display list will
make the rendering faster.

© 2004, Tom Duff and George Ledin Jr 25

Case Study 4, continued …
Render three cubes with same emission color (solid blue) but different alpha value of red

diffuse color
void display(void)
{

GLfloat mat_zero[] = { 0.0, 0.0, 0.0, 1.0 }; //black
GLfloat mat_transparent1[] = { 1, 0, 0, 0.6}; // red 0.6 diffuse
GLfloat mat_transparent2[] = { 1, 0, 0, 0.8}; // red 0.8 diffuse
GLfloat mat_transparent3[] = { 1, 0, 0, 1}; // red 1 diffuse
GLfloat mat_emission[] = { 0.0, 0, 1, 1 }; // blue

SetBackground(0,0,0,1); //black

// Cube on the left: diffuse = red, alpha = 0.6
glPushMatrix ();
glTranslatef (-1, 0, 0);//
glRotatef (15.0, 1.0, 1.0, 0.0);
glRotatef (30.0, 0.0, 1.0, 0.0);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent1);//red

glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE);

glCallList (cubeList);
glDisable (GL_BLEND);
glPopMatrix ();

// Cube in the middle: diffuse = red, alpha = 0.8
glPushMatrix ();
glTranslatef (0, 0, 0);
glRotatef (15.0, 1.0, 1.0, 0.0); glRotatef (30.0, 0.0, 1.0, 0.0);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent2);//red

glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glCallList (cubeList);
glDepthMask (GL_TRUE);
glDisable (GL_BLEND);
glPopMatrix ();

//Cube on the right: diffuse=red, alpha = 1
glPushMatrix ();
glTranslatef (1, 0, 0);
glRotatef (15.0, 1.0, 1.0, 0.0);
glRotatef (30.0, 0.0, 1.0, 0.0);
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);//blue
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent3);//red

glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE);
glCallList (cubeList);
glDisable (GL_BLEND);
glPopMatrix ();

glFlush();
}

Conclusion:
The alpha value of material affects the final object color.

Between [0,1], the larger the alpha value, the
Deeper the color.

In this case, the cube on the right has alpha
value 1 for its diffuse color, therefore it diffuses more red.
Since red (diffuse) + blue (emissive color) = purple,
therefore, the cube on the right displays deeper purple.

© 2004, Tom Duff and George Ledin Jr 26

Case Study 5
Blending with depth buffer

• Scenario:
– In the scene, there is a translucent cyan cube in

front of a solid yellowish sphere.
• The cube is centered at (0.1, 0.1, 8)
• The sphere is centered at (-0.1, -0.1, 8)

– Each time user click “a” on the keyboard, the cube
will move backwards a bit.

– When user click “r” on the keyboard, the cube will
be reset to its original position.

• Goal:
– The part of translucent cyan cube that is in

front of the solid sphere blended with sphere.

– The part of translucent cyan cube that is
behind the sphere will not be displayed.

© 2004, Tom Duff and George Ledin Jr 27

The code to move the translucent cyan cube backward when user click
“a”, and reset the position of cube, when user click “r”

#define ZINC 1
#define MAXZ 8.0
#define MINZ -8.0
static float solidZ = MINZ;
static float transparentZ = MAXZ;
void ChangeLocation(void) {

transparentZ -= ZINC;
glutPostRedisplay();

}
void keyboard(unsigned char key, int x, int y) {

switch (key) {
case 'a':
case 'A':
ChangeLocation();

glutPostRedisplay();
break;

case 'r':
case 'R':

transparentZ = MAXZ;
glutPostRedisplay();
break;

case 27:
exit(0);

}
}

• In the code left, when user click ‘a’ or ‘A”,
the global valuable which keeps track of the
location of the cyan cube is incremented.

• The result is that the cube is moved
backward.

• As the transparent cube moves forward,
what we expect to see is that it blends with
the opaque sphere.

© 2004, Tom Duff and George Ledin Jr 28

Our trouble, when the translucent cyan cube is in the front of solid sphere, the

color of cube does not blend with the color of the sphere.
void display(void)
{

…
//glClear (GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);
SetBackground(1,1,1,1);

// Draw the translucent cube farther from camera
glPushMatrix ();
glTranslatef (0.15, 0.15, transparentZ);
…
glEnable (GL_BLEND);

glBlendFunc (GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

glCallList (cubeList);
glDisable (GL_BLEND);

glPopMatrix ();

// Draw the solid sphere closer to camera
glPushMatrix ();
glTranslatef (-0.15, -0.15, solidZ);
…
glCallList (sphereList); // draw the solid sphere
glPopMatrix ();

glutSwapBuffers();
}

© 2004, Tom Duff and George Ledin Jr 29

How to fix the problem occurred when you draw both
translucent and solid objects in one scene?

• It might be a bug in OpenGL that when you draw translucent objects mixed with
solid objects in one scene, if draw the translucent object first, OpenGL treats it as
if it were solid, blending will not occur.

• Fix:

– If you want translucent objects (in front) blending with solid objects, and solid
objects (in front) obscuring translucent objects, you need to exercise care if
you draw the translucent and solid objects in one scene.

– The way to draw the objects are as follows:

(1) Enable the depth buffer.

(2) Draw all opaque objects.

(3) Enable blend, then draw all translucent objects.

© 2004, Tom Duff and George Ledin Jr 30

New Code

Drawing the solid sphere before drawing the transparent cube.
void display(void){

…
//glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
SetBackground(1,1,1,1);

// Draw the solid sphere closer to camera
glPushMatrix ();
glTranslatef (-0.15, -0.15, solidZ);
…
glCallList (sphereList); // draw the solid sphere
glPopMatrix ();

// Draw the translucent cube farther from camera
glPushMatrix ();
glTranslatef (0.15, 0.15, transparentZ);
…
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

glCallList (cubeList);
glDisable (GL_BLEND);

glPopMatrix ();

glutSwapBuffers();
}

	LecturesTransparency Case Study
	How is transparency achieved in OpenGL?
	Enable/Disable blending of color
	Alpha Value
	What happens when blending is enabled?
	Case Study 1 a real world scenario
	Case Study 1 – Answer is AReason: Because yellow circle is more opaque, therefore we see more of the yellow and less of the b
	The source and destination factors
	How does OpenGL blend the source and destination color values?
	Blend Function
	Source and Destination Blending Factors Table
	Case Study 2Source and Destination Blending Factors
	Init blending function in main
	Test Case ALet sFactor = GL_SRC_ALPHA, dFactor = GL_ONE_MINUS_SRC_ALPHADraw blue circle first, yellow second.
	Use our predicted final blending value to draw an object (circle) and compare its color with the blended color of the blue and
	Test Case BLet sFactor = GL_SRC_ALPHA, dFactor = GL_ONE_MINUS_SRC_ALPHADraw yellow circle first, blue circle second.
	Use our predicted final blending value to draw an object (circle) and compare the color with the blending color of the yellow
	Conclusion drawn from Test A and Test B
	Case 3Blending is dangerous and has many artifacts
	Case 3, AObject is visible with black background but disappears with white background
	Case 3, BBlending with depth buffer read-only vs depth buffer writable.
	Lesson from Case 3
	Case 4How does the alpha value affect the object’s color?
	Case Study 4, continued …Setup common traits for the three cubes to be rendered
	Case Study 4, continued …Render three cubes with same emission color (solid blue) but different alpha value of red diffuse co
	Case Study 5Blending with depth buffer
	The code to move the translucent cyan cube backward when user click “a”, and reset the position of cube, when user click “r”
	Our trouble, when the translucent cyan cube is in the front of solid sphere, the color of cube does not blend with the color o
	How to fix the problem occurred when you draw both translucent and solid objects in one scene?
	New Code Drawing the solid sphere before drawing the transparent cube.

