
© 2004, Tom Duff and George Ledin Jr 1

Lectures
Directional Light Case Study

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

How does light work?
• Decide what kind of light(s) you want

void glLightfv(GLenum light, GLenum pname, const GLfloat *params)

– light : Specifies the light, which can be GL_LIGHT0, GL_LIGHT1, … or GL_LIGHT7. At least 8 in
OpenGL, but may be more in other implementations.

–
– pname: Specifies a light source characteristic.

– param: Specifies the value to which pname characteristic is set to.

• Turn on the light(s)
– Lighting in general must be enabled.

– Each individual light must be enabled.

• In the following examples, we will look at how to position the light, using GL_POSITION, and we will look
at other light characteristics later:

– GL_AMBIENT
– GL_DIFFUSE
– GL_SPECULAR

© 2004, Tom Duff and George Ledin Jr 3

Directional Light vs Spot Light
• Directional Light: The source of light is at infinity. The light is a parallel light from a specified

direction.

– We use a vector (x,y,z,0) to represent directional light, and we specify this vector by invoking
glLight().

• The “(x,y,z)” is specified at world coordinates.
• The “(x,y,z)” is to represent the direction of light. This vector always points to the origin.
• The “0” simply means light source is at infinity.

– Diffuse and specular lighting calculations take into account the light's direction, but not its actual
position, and attenuation is disabled.

• Spot Light: Light has a position, direction and angle.

– We use a vector (x,y,z,1) to represent the spot light, and its location at (x,y,z) by invoking glLight().

• The “(x,y,z)” is specified at camera coordinates.
• The “(x,y,z)” is to represent the actual position of the light.
• The “1” simply means that the light is a spotlight.

– We use another vector (a,b,c) to represent the direction of the spotlight.

• The (a,b,c) is specified at world coordinates.
• The vector (a,b,c) always points to the origin.

© 2004, Tom Duff and George Ledin Jr 4

Directional light
General Questions

• General questions:

– How can we specify the direction of each of several lights? (such as LIGHT0,
LIGHT1, LIGHT2, and etc)

– How can we verify that the proportion of the sphere’s area that is lit up is the
same for: GLfloat light_position[]={0.5,0.5,0,0} or {1,1,0,0} or {-0.5,0.5,0,0} or
etc?

– How do we determine exactly these proportion? For example, is the porportion
for {0.5, 0.5,0,0} greater than for {0.5,1.0,0,0}?

• Methods:

– In the later on slides, we will graphically show how portion of objects are lit by the
light specified its location and direction.

© 2004, Tom Duff and George Ledin Jr 5

Case Study 1
Generic Directional Light Case

Case Study Setup:

• Object’s setup:
– Assume in the world coordinates we have one black

sphere of radius 1, centered at (0,0,0).

glutSolidSphere(1, 100,100);

• The camera’s setup:
gluLookAt(a,b,c, d,e,f, g,h,i);

• Light’s direction setup:

GLfloat light_position[] = (x,y,z,1);
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

Goal:
Find out how will the sphere be lit up by the
light?

© 2004, Tom Duff and George Ledin Jr 6

Case Study 2
Directional Lighting

Case Study Setup:
Now assume in world coordinates we have three
black spheres of radius 1, centered, respectively, at
(0,0,0), (-3,0,0) and (3,0,0).

Code for displaying the three spheres:
glutSolidSphere (1, 100,100); //center sphere

glPushMatrix(); //right sphere
glTranslatef(3,0,0);
glutSolidSphere (1, 100,100);
glPopMatrix();

glPushMatrix(); // left sphere
glTranslatef(-3,0,0);
glutSolidSphere (1, 100,100);
glPopMatrix();

Goal:
We will experiment with different light directions in
world coordinates to see how the three spheres will
be lit up.

© 2004, Tom Duff and George Ledin Jr 7

Directional Lighting
Set up the Projection View and Model View

void reshape (int w, int h)
{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)

glOrtho (-4, 4, -4*(GLfloat)h/(GLfloat)w,
4*(GLfloat)h/(GLfloat)w, -4.0, 4.0);

else
glOrtho (-4*(GLfloat)w/(GLfloat)h,

4*(GLfloat)w/(GLfloat)h, -4, 4, -4, 4.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_DEPTH_TEST);
gluLookAt(0,0,0,0,0,-1,0,1,0);

}

//main.c
glutReshapeFunc(reshape);

• What is achieved by the reshape function?

– When w = h, the world coordinate
bounding box is 8x8x8. If object is
outside the bounding box, it cannot be
viewed. If part of an object is outside,
that part cannot be viewed.

– When window is resized, and w>h or
w<h, the object will maintain its shape,
because reshape function adjusts the
object’s aspect ratio (width/height)
according to window size.

– Camera is explicitly set as located at
(0,0,0), looking at (0,0,-1), which
means camera is looking in the –z
direction.

• Camera is always at the geometric center of the
bounding box whose size is the same as world
coordinates’ bounding box. The camera cannot
see anything outside its box.

© 2004, Tom Duff and George Ledin Jr 8

Directional Lighting
Set up one light source and the direction of the light

Example 1
void init(void)
{

GLfloat light_position[] = {0.5, 0.5, 0, 0};

// Enable light capability
glEnable(GL_LIGHTING);
// Enable one light, light 0
glEnable(GL_LIGHT0);

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light
parameter
light_position); // light’s position

}
//in main
Init();

Note on light_position: (x, y, z, w)
1. When w = 0, the light is treated as directional light

source.

2. The direction of light is a vector specified by (x,y,z) of
light_position and the origin (0,0,0).

• (0.5,0.5,0) (0,0,0).

© 2004, Tom Duff and George Ledin Jr 9

Directional Lighting
Set up light source and the direction of the light

Example 2
void init(void)
{

GLfloat light_position[] = {0.5, 1, 0, 0};

// Enable light capability
glEnable(GL_LIGHTING);
// Enable one light, light 0
glEnable(GL_LIGHT0);

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light
parameter
light_position); // light’s position

}
//in main
Init();

Note on light_position: (x, y, z,w)
1. When w = 0, the light is treated as directional light

source.

2. The direction of light is a vector specified by (x,y,z) of
light_position and the origin (0,0,0).

(0.5,1,0) (0,0,0).

© 2004, Tom Duff and George Ledin Jr 10

Directional Lighting
Set up light source and the direction of the light

Example 3void init(void)
{

GLfloat light_position[] = {1, 0, 0, 0};

// Enable light capability
glEnable(GL_LIGHTING);
// Enable one light, light 0
glEnable(GL_LIGHT0);

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light
parameter
light_position); // light’s position

}
//in main
Init();

Note on light_position: (x, y, z, w)
1. When w = 0, the light is treated as directional light source.

2. The direction of light is a vector specified by (x,y,z) of
light_position and the origin (0,0,0).

(1,0,0) (0,0,0)

3. Directional light does not deal with occlusion. The rightmost
sphere should block any light shining on the two spheres to
the left of it in real life, but in OpenGL directional lighting, it
doesn’t!

© 2004, Tom Duff and George Ledin Jr 11

Directional Lighting
Set up light source and the direction of the light

Example 4 (default)

void init(void)
{

// Enable light capability
glEnable(GL_LIGHTING);
// Enable one light, light 0
glEnable(GL_LIGHT0);

}
//in main
Init();

Note on light_position:

1. If we do not specify glLight(), then OpenGL has a default set up.

2. The default setting for light:
GLfloat light_position[] = {0, 0, 1, 0}; //light’s position
glLightfv(GL_LIGHT0, // use light0

GL_POSITION, // uses “position as light parameter
light_position); // light’s position

3. Therefore, the default light source is directional, parallel to, and in the direction of,
the -z axis.

(0,0,1) (0,0,0)

© 2004, Tom Duff and George Ledin Jr 12

Directional Lighting
Set up light source and the direction of the light

Example 5 (a slight light position variation from example 4)

Example 4 (previous case)

default setting:
GLfloat light_position[] = {0, 0, 0, 0};

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light parameter
light_position); // light’s position

Example 5

GLfloat light_position[] = {0.3, 0, 0, 0};

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light parameter
light_position); // light’s position

Note:
A slight variation of light position will slightly change

the proportion of light lighting up the objects.

© 2004, Tom Duff and George Ledin Jr 13

Directional Lighting
Set up light source and the direction of the light

Example 6void init(void)
{

GLfloat light_position[] = {0, 0, 0, 0};

// Enable light capability
glEnable(GL_LIGHTING);
// Enable one light, light 0
glEnable(GL_LIGHT0);

glLightfv(
GL_LIGHT0, // use light0
GL_POSITION, // uses “position as light
parameter
light_position); // light’s position

}
//in main
Init();

Note on light_position: (x, y, z, w)
1. When w = 0, the light is treated as directional light

source.

2. The direction of light is a vector specified by (x, y, z) of
light_position and the origin (0,0,0). In this case the
light vector is (0,0,0), which is (0,0,0) (0,0,0)
(undefined). Therefore, none of the three spheres is lit
up.

© 2004, Tom Duff and George Ledin Jr 14

Camera’s position, not where the camera is aiming at,
affect light’s position

• In the previous cases, the camera’s position is set to default
position, which is (0,0,0);

• Because light’s position in OpenGL is relative to camera’s position,
camera’s position has the effect of shifting the relative position of
light and the point the light is aiming at on the object.

• However, where the camera is aiming at has no effect of light’s
position relative to the point the light is aiming at on the object.

– So: Camera is at (a,b,c), aimed at (d,e,f) is the same as camera as
(a,b,c), aimed at (x,y,z) (where (x,y,z) is different from (d,e,f)), as far as
the lighting on the objects is concerned.

© 2004, Tom Duff and George Ledin Jr 15

Case Study 3
Directional Light with Camera at location other than (0,0,0)

Case Study Setup:
Now assume in world coordinates we have three
black spheres of radius 1, centered, respectively, at
(0,0,0), (-3,0,0) and (3,0,0).

Code for displaying the three spheres:
glutSolidSphere (1, 100,100);

glPushMatrix();
glTranslatef(3,0,0);
glutSolidSphere (1, 100,100);
glPopMatrix();

glPushMatrix();
glTranslatef(-3,0,0);
glutSolidSphere (1, 100,100);
glPopMatrix();

Goal:
We will experiment with directional light’s location in
relation to camera’s location by setting camera’s
location other than (0,0,0).

Front View

© 2004, Tom Duff and George Ledin Jr 16

Case Study 3
Directional Light with Camera at location (0,0,1), aiming at (0,0,-1)

void init(void)
{

// spot light’s position
GLfloat light_position[] = {2, -2, 0, 0};

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light,
light 0

// specify spot light position at (2,-2,0)
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

}
//in main
Init();
// gluLookAt in reshape function
gluLookAt(1,0,0,1,0,-2,0,1,0);

Front View

Note on light_position: (x, y, z, w)
1. When w = 0, the light is treated as directional light source.

2. The direction of light is a vector specified by (x,y,z) of light_position
and the origin (0,0,0).

• (2,-2,0) (0,0,0).

© 2004, Tom Duff and George Ledin Jr 17

Case Study 3 - Compare Two Cases
1. Camera at (0,0,0), aiming at (0,0,-1). glLight’s direction vector (2,-2,0)

2. Camera at location (1,0,0), aiming at (1,0,-2). glLight’s direction vector (2,-2,0)

Case 1 Case 2

Case 2 FrontView:Case 1 FrontView:

Although in the above two cases, camera’s locations are different, since light’s actual direction is
specified in the world coordinates, and have nothing to do with the camera’s coordinates, therefore, the
outputs of both cases show that the three spheres are lit by the light from the same direction.

This is the same as the light’s direction for spotlight, which is also specified in world coordinates by a
vector.

© 2004, Tom Duff and George Ledin Jr 18

What’s ambient light?
• Ambient illumination is light that is so scattered so much by the environment that

its direction is impossible to determine—it seems to come from all directions

– When you turn on a light bulb in a room, most of the light comes from the
bulb, but some light comes after bouncing off one, two, three, or more walls
(and perhaps various other objects in that room).

– This bounced light (called ambient) is assumed to be so scattered that there
is no way to tell its original direction, but it disappears if a particular light
source is turned off.

– Sunlight streaming through a window, in combination with light coming from
fluorescent light fixtures in the ceiling, produces a room that appears to be lit
up everywhere in more or less the same way.

– A particular characteristic of ambient light is that it lights up a scene without
making any discernible shadows.

© 2004, Tom Duff and George Ledin Jr 19

Case 4
Study of ambient light

Colors are defined in levels
• Level 0 (blue not lit)
• Level 2 (blue slightly lit)
• …
• Level n (blue strongly lit)

Case Study Setup:
• Object Setup:

Assume in the world coordinates we have one glut sphere of
radius 2, centered at (0,0,0).

glutSolidSphere (2, 100,100);

• Light’s position

GLfloat light_position[] = {3, 3, 3, 0 };
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

Goal:
We will change the value a (blue color value for light) and b (blue

color value for material) to see how the object changes color.

// lighting values and code
GLfloat fLtAmbient[4] = {0,0,a,1};

// material values and code
GLfloat fMatAmbient[4] = {0,0,b,1};

glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

glMaterialfv(GL_FRONT, GL_AMBIENT, fMatAmbient);

Black

Blue not lit
Level 0 Level 1 Level 3 Level 5

© 2004, Tom Duff and George Ledin Jr 20

The code for light setting
Later on, we will change “a” and “b” to see changes in the color of the sphere.

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,a,1}; // red = 0, green = 0, blue = a
GLfloat fLtDiffuse[4] = {0,0,0,1};
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0,0,b,1}; // red = 0, green = 0, blue = b
GLfloat fMatDiffuse[4] = {0,0,0,1};
GLfloat fMatSpecular[4] = {0,0,0,1};
GLfloat fShine = 0;

glEnable(GL_LIGHTING);
// enalbe lighting property
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, fLtDiffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, fLtSpecular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glEnable(GL_LIGHT0);

// enable material property
glMaterialfv(GL_FRONT, GL_AMBIENT, fMatAmbient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, fMatDiffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, fMatSpecular);
glMaterialf(GL_FRONT, GL_SHININESS, fShine);

Note: the ordering of these lines of code
does not matter. You can enable lighting
property first, then material or vice versa.

The ordering of the codes presented here
is to make the logic of code easy for reader
to follow.

© 2004, Tom Duff and George Ledin Jr 21

Ambient light does not have direction
Case 1
Black

Case 2
Level 0 blue

Case 3
Level 1 blue

Case 4
Level 2 blue

0.7
0.3

Ambient Light blue - a:
Ambient Material blue -b:

0
0

0
1

0.3
0.7

Case 5
Level 2 blue

Case 6
Level 3 blue

Case 7
Level 4 blue

Case 8
Level 5 blue

Ambient Light blue - a:
Ambient Material blue - b:

0.5
0.5

1
0.5

0.5
1

1
1

© 2004, Tom Duff and George Ledin Jr 22

Case 1 shows that the sphere is black, because both ambient material’s blue and
ambient light’s blue is set to 0.

Case 1
Black

Case 2
Level 0 blue

Case 3
Level 1 blue

Case 4
Level 2 blue

Ambient Light blue - a:
Ambient Material blue - b:

0
0

0
1

0.7
0.3

0.3
0.7

Case 5
Level 2 blue

Case 6
Level 3 blue

Case 7
Level 4 blue

Case 8
Level 5 blue

Ambient Light blue - a:
Ambient Material blue - b:

0.5
0.5

1
0.5

0.5
1

1
1

© 2004, Tom Duff and George Ledin Jr 23

In Case 2, although material’s ambient blue is maximum, 1, light’s
ambient blue = 0, therefore, the object is dark blue.

Case 1
Black

Case 2
Level 0 blue

Case 3
Level 1 blue

Case 4
Level 2 blue

Ambient Light blue - a:
Ambient Material blue - b:

0
0

0
1

0.7
0.3

0.3
0.7

Case 5
Level 2 blue

Case 6
Level 3 blue

Case 7
Level 4 blue

Case 8
Level 5 blue

Ambient Light blue - a:
Ambient Material blue - b:

0.5
0.5

1
0.5

0.5
1

1
1

© 2004, Tom Duff and George Ledin Jr 24

Case 4 is blue lit lighter than in Case 3. Case 7 is blue lit lighter than in Case 6. This is because

the material’s ambient blue is brighter than the light’s ambient blue.

Case 1
Black

Case 2
Level 0 blue

Case 3
Level 1 blue

Case 4
Level 2 blue

Ambient Light blue - a:
Ambient Material blue - b:

0
0

0
1

0.7
0.3

0.3
0.7

Case 5
Level 2 blue

Case 6
Level 3 blue

Case 7
Level 4 blue

Case 8
Level 5 blue

Ambient Light blue - a:
Ambient Material blue - b:

0.5
0.5

1
0.5

0.5
1

1
1

© 2004, Tom Duff and George Ledin Jr 25

Case 8 shows a blue sphere lit lightest, because both material’s ambient blue and
light’s ambient blue are set to maximum 1.

Case 2
Level 0 blue

Case 3
Level 1 blue

Case 4
Level 2 blue

Case 1
Black

Ambient Light blue - a:
Ambient Material blue - b:

0
0

0
1

0.7
0.3

0.3
0.7

Case 5
Level 2 blue

Case 6
Level 3 blue

Case 7
Level 4 blue

Case 8
Level 5 blue

Ambient Light blue - a:
Ambient Material blue - b:

0.5
0.5

1
0.5

0.5
1

1
1

© 2004, Tom Duff and George Ledin Jr 26

Case 5

The following three spheres display level 0, blue not lit, because as long as the
light’s blue component is “0”, although the material is set blue “1”, the object

displays the same shade of blue color.

Case 1
Level 0 blue

Case 2
Level 0 blue

Case 3
Level 0 blue

Ambient Light’s color
red = 0, green = 0, blue = 0:

Ambient Light’s color
red = 1, green = 0, blue = 0:

Ambient Light’s color
red = 0, green = 1, blue = 0:

Ambient material’s
red = 0, green = 0, blue = 1:

© 2004, Tom Duff and George Ledin Jr 27

Case 6

All the following three display black ball, because the material has no color.

Case 1
Black

Case 2
Black

Case 3
Black

Ambient Light’s color
red = 0, green = 0, blue = 1:

Ambient Light’s color
red = 0, green = 1, blue = 0:

Ambient Light’s color
red = 1, green = 0, blue = 0:

Ambient material’s
red = 0, green = 0, blue = 0:

© 2004, Tom Duff and George Ledin Jr 28

Conclusions about ambient components
of light and material

• Ambient light does not have direction:

– Although the light’s position is (3,3,3) and the object is located at (0,0,0), because the diffuse and the
specular components are all zeros, and ambient light does not have direction, therefore, the whole object (a
sphere) gets light and appears to be of the same color. (In our example, from dark blue to light blue)

• When the material’s ambient component is X (e.g. blue), then the object shows that color X. The larger the X
(0<X<1), the deeper the color of the object. In the following case, objects drawn afterwards show blue color.

GLfloat fMatAmbient[4] = {0,0,X,1); // blue = X amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

• When the material’s ambient component is X (e.g. blue), but the color of light’s ambient component for the X is 0,
then the object is extremely dark. The larger the Y (0<Y<1), then the brighter the object of X color (in this case,
blue).

GLfloat fLtAmbient[4] = {0,0,Y,1); //blue=Y amount.When Y is larger, the color X is brighter.
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

GLfloat fMatAmbient[4] = {0,0,X,1); // blue = X amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

© 2004, Tom Duff and George Ledin Jr 29

Conclusion about ambient components
of light and material, Continued …

• Our experiment shows that the material ambient component X (e.g. blue) has larger
effect on the brightness of an object of color X than the corresponding lgihting
ambient component Y (same color as X) For example, Case A shows a brighter blue
object than Case B.

– Y2 – Y1 = a (Y1 > Y2) X1 - X2 = a (X1 > X2)

• Case A
GLfloat fLtAmbient[4] = {0,0,Y1,1); // blue = Y1 amount
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

GLfloat fMatAmbient[4] = {0,0,X1,1); // blue = X1 amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

• Case B
GLfloat fLtAmbient[4] = {0,0,Y2,1); // blue = Y2 amount
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

GLfloat fMatAmbient[4] = {0,0,X2,1); // blue = X2 amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

© 2004, Tom Duff and George Ledin Jr 30

What’s diffuse light?
• In a diffuse interaction, the reflected light is scattered equally in all

directions.

• Unlike ambient light which will light the entirely object equally, the
diffuse light interaction only happen on the side of object facing the
light.

– Any light coming from a particular position or direction probably
has a diffuse component. The effect of diffuse light is that it lights
up the side of object facing the light.

© 2004, Tom Duff and George Ledin Jr 31

Case 7
Study of diffuse light

Colors are defined in levels
• Level 0 (green not lit)
• Level 2 (green slightly lit)
• …
• Level n (green strongly lit)

Case Study Setup:
• Object Setup:

Assume in the world coordinates we have one glut sphere of
radius 2, centered at (0,0,0).

glutSolidSphere (2, 100,100);

• Light’s position

GLfloat light_position[] = {3, 3, 3, 0 };
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

Goal:
We will change the value a (green color value for light) and b (green

color value for material to see how the object changes color.

// lighting values and code
GLfloat fLtDiffuse[4] = {0,0,a,1};

// material values and code
GLfloat fMatDiffuse[4] = {0,b,0,1};

glLightfv(GL_LIGHT0, GL_AMBIENT, fLtDiffuse);

glMaterialfv(GL_FRONT, GL_AMBIENT, fMatDiffuse);

Black

Level 0 Level 1 Level 3 Level 5

© 2004, Tom Duff and George Ledin Jr 32

The code for light setting
Later on, we will change “a” and “b” to see what color will the sphere be displayed.

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,0,1};
GLfloat fLtDiffuse[4] = {0,a,0,1}; // red = 0, green = a, blue = 0

GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0,0,0,1};
GLfloat fMatDiffuse[4] = {0,b,0,1}; // red = 0, green = b, blue = 0
GLfloat fMatSpecular[4] = {0,0,0,1};
GLfloat fShine = 0;

glEnable(GL_LIGHTING);
// enalbe lighting property
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, fLtDiffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, fLtSpecular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glEnable(GL_LIGHT0);

// enable material property
glMaterialfv(GL_FRONT, GL_AMBIENT, fMatAmbient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, fMatDiffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, fMatSpecular);
glMaterialf(GL_FRONT, GL_SHININESS, fShine);

© 2004, Tom Duff and George Ledin Jr 33

Diffuse takes the direction of light.
Case 1
Black

Case 2
Level 0 green

Case 3
Level 1 green

Case 4
Level 1 green

Ambient Light green - a:
Ambient Material green -b:

0
0

0
1

1
0.5

0.5
1

Case 5
Level 2 green

Case 6
Level 3 green

Case 7
Level 4 green

Case 8
Level 5 green

Ambient Light green - a:
Ambient Material green - b:

0.9
0.7

0.7
0.9

1
1

0.7
0.7

© 2004, Tom Duff and George Ledin Jr 34

Case 1 shows that the sphere is black, because both material’s diffuse green and
light’s diffuse green is set to 0.

Case 1
Black

Case 2
Level 0 green

Case 3
Level 1 green

Case 4
Level 1 green

Ambient Light green - a:
Ambient Material green -b:

0
0

0
1

1
0.5

0.5
1

Case 5
Level 2 green

Case 6
Level 3 green

Case 7
Level 4 green

Case 8
Level 5 green

Ambient Light green - a:
Ambient Material green - b:

0.9
0.7

0.7
0.9

1
1

0.7
0.7

© 2004, Tom Duff and George Ledin Jr 35

In Case 2, although material’s diffuse green is maximum, 1, but light’s
diffuse blue = 0, therefore, the object is green hardly lit.

Case 1
Black

Case 2
Level 0 green

Case 3
Level 1 green

Case 4
Level 1 green

Ambient Light green - a:
Ambient Material green -b:

0
0

0
1

1
0.5

0.5
1

Case 5
Level 2 green

Case 6
Level 3 green

Case 7
Level 4 green

Case 8
Level 5 green

Ambient Light green - a:
Ambient Material green - b:

0.9
0.7

0.7
0.9

1
1

0.7
0.7

© 2004, Tom Duff and George Ledin Jr 36

Case 3 is green lighter lit than case 4. Case 6 is green lighter lit than case 7. This is
because the material’s diffuse green is less bright than the light’s diffuse green.

Case 1
Black

Case 2
Level 0 green

Case 3
Level 1 green

Case 4
Level 1 green

Ambient Light green - a:
Ambient Material green -b:

0
0

0
1

1
0.5

0.5
1

Case 5
Level 2 green

Case 6
Level 3 green

Case 7
Level 4 green

Case 8
Level 5 green

Ambient Light green - a:
Ambient Material green - b:

0.9
0.7

0.7
0.9

1
1

0.7
0.7

© 2004, Tom Duff and George Ledin Jr 37

Case 4 shows that the sphere is green lit strongest, because both material’s
diffuse green and light’s diffuse green is set to maximum 1.

Case 1
Black

Case 2
Level 0 green

Case 3
Level 1 green

Case 4
Level 1 green

Ambient Light green - a:
Ambient Material green -b:

0
0

0
1

1
0.5

0.5
1

Case 5
Level 2 green

Case 6
Level 3 green

Case 7
Level 4 green

Case 8
Level 5 green

Ambient Light green - a:
Ambient Material green - b:

0.9
0.7

0.7
0.9

1
1

0.7
0.7

© 2004, Tom Duff and George Ledin Jr 38

Case 8

The following three display level 0, green hardly lit, because as long as the light’s
diffuse green component is “0” (althought the material is set to diffuse green “1”),

the object displays the same shade of green color.

Case 1
Level 0 green

Case 2
Level 0 green

Case 3
Level 0 green

diffuse Light’s color
red = 0, green = 0, blue = 0:

diffuse Light’s color
red = 1, green = 0, blue = 0:

diffuse Light’s color
red = 0, green = 0, blue = 1:

diffuse material’s
red = 0, green = 1, blue = 0:

© 2004, Tom Duff and George Ledin Jr 39

Conclusion about diffuse components
of light and material

• Diffuse light takes consideration of light’s direction.

• We can graphically draw the objects and light’s direction in world coordinate on paper, and where the light hits the
object will be lit up by the light.

• The larger the value of diffuse light and diffuse material of color X, the more lit up the color X on the object towards
the light’s source.

• When the material’s ambient component is X (e.g. green), then the object shows that color X. The larger the X
(0<X<1), the deeper the color of the object. In the following case, objects drawn afterwards show blue color.

GLfloat fMatDiffuse[4] = {0,X,0,1); // green = X amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatDiffuse);

• When the material’s diffuse component is X (e.g. green), but the light’s diffuse component for the X is 0, then the object is
extremely dark. The larger the Y (0<Y<1), then the brighter the object of X color (in this case, green).

GLfloat fLtDiffuse[4] = {0,Y,0,1); // green = Y amount. The larger the Y, the brighter the X color
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtDiffuse);

GLfloat fMatDiffuse[4] = {0,X,0,1); // green = X amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatDiffuse);

© 2004, Tom Duff and George Ledin Jr 40

Conclusion about diffuse components
of light and material, Continued …

• Our experiment shows that the light’s diffuse component X (e.g. green) has larger
effect on the brightness of object of color X than the corresponding material’s diffuse
component Y (same color as X) For example, Case B shows object has more green
lit up than Case A.

– This is opposite of ambient characteristic, where under the same situation, case
A will be lit brighter than case B.

• Y2 – Y1 = a (Y1 > Y2) X1 - X2 = a (X1 > X2)
• Case A

GLfloat fLtAmbient[4] = {0,0,Y1,1); // blue = Y1 amount
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

GLfloat fMatAmbient[4] = {0,0,X1,1); // blue = X1 amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

• Case B
GLfloat fLtAmbient[4] = {0,0,Y2,1); // blue = Y2 amount
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);

GLfloat fMatAmbient[4] = {0,0,X2,1); // blue = X2 amount
glMaterialf(GL_FRONT, GL_AMBIENT, fMatAmbient);

© 2004, Tom Duff and George Ledin Jr 41

Case 9
Combining ambient and diffuse light

Case Study Setup:
• Object Setup:

Assume in the world coordinates we have one glut sphere of
radius 2, centered at (0,0,0).

glutSolidSphere (2, 100,100);

• Light’s position

GLfloat light_position[] = {3, 3, 3, 0 };
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

Goal:
We will change the value of both ambient and diffuse
components of light source and object’s material to see how the
object change color.

// lighting values and code
GLfloat fLtAmbient[4] = {a1,a2,a3,1};
GLfloat fLtDiffuse[4] = {b1,b2,b3,1};

// material values and code
GLfloat fMatDiffuse[4] = {c1,c2,c3,1};
GLfloat fMatDiffuse[4] = {d1,d2,d3,1};

glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient);
glMaterialfv(GL_FRONT, GL_AMBIENT, fMatDiffuse);

© 2004, Tom Duff and George Ledin Jr 42

Using ambient green combined with diffuse green

1. In choice B, some ambient green lights up the whole ball, but not in choice A.
• Ambient light of material and light source light up the whole object. Diffuse light of material and light

source lit up the object’s side facing the light source.

2. In choice B, some ambient green adds diffuse green to make the side of object facing the light brighter, but
not in choice A.

• When using both ambient and diffuse light with the light source and material of object, the ambient
and diffuse color are added.

Choice A
Without ambient green

Choice B
With ambient green

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,0,1};//green=0
GLfloat fLtDiffuse[4] = {0,1,0,1};//green=1
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0,0,0,1};//green=0
GLfloat fMatDiffuse[4] = {0,1,0,1};//green=1
GLfloat fMatSpecular[4] = {0,0,0,1};

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0.5,0,1};//green=0.5
GLfloat fLtDiffuse[4] = {0,1,0,1};//green=1
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0,0.5,0,1};//green=0.5
GLfloat fMatDiffuse[4] = {0,1,1,1};//green=1
GLfloat fMatSpecular[4] = {0,0,0,1};

© 2004, Tom Duff and George Ledin Jr 43

Using ambient red combined with diffuse green

1. In choice A, reddish color lights up the whole ball because of ambient red in both light source and material.
The side of object facing light is concentrated green color because of diffuse green in both light source and
material.

2. In choice B, reddish color lights up the whole ball brightly because of ambient red in both light source and
material is set to maximum, 1. The side of object facing light is concentrated yellow color because of diffuse
green adds ambient red in both light source and material makes the side of object facing light look yellow.

Choice A
Without ambient red

Choice B
With ambient red

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {1,0,0,1};//red=1
GLfloat fLtDiffuse[4] = {0,1,0,1};//green=1
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {1,0,0,1};//red=1
GLfloat fMatDiffuse[4] = {0,1,1,1};//green=1
GLfloat fMatSpecular[4] = {0,0,0,1};

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0.7,0,0,1};//red=0.7
GLfloat fLtDiffuse[4] = {0,1,0,1};//green=1
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0.7,0,0,1};//red=0.7
GLfloat fMatDiffuse[4] = {0,1,0,1};//green=1
GLfloat fMatSpecular[4] = {0,0,0,1};

© 2004, Tom Duff and George Ledin Jr 44

What’s Specular Light?
• specular light comes from a particular direction, and it tends to bounce off

the surface in a preferred direction.

• Example:
– A well-collimated laser beam bouncing off a high-quality mirror produces

almost 100 percent specular reflection.

– Shiny metal or plastic has a high specular component, and chalk or
carpet has almost none. You can think of specularity as shininess.

© 2004, Tom Duff and George Ledin Jr 45

Case 10
Study of specular light

Case Study Setup:
• Object Setup:

Assume in the world coordinates we have one glut
sphere of radius 2, centered at (0,0,0).

glutSolidSphere (2, 100,100);

• Light’s position

GLfloat light_position[] = {3, 3, 3, 0 };
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

• The ambient and diffuse set up:
– blue. (So that we can see the specular color better.

Goal:
We will change the value of specular light and the
shininess of object to see how the object changes
color.

Ambient, diffuse = blue

With reddish specular color and different shininess

© 2004, Tom Duff and George Ledin Jr 46

Setup a blue ball with ambient and diffuse blue before adding any specular color.

Ambient blue of both light source and material lights up the sphere with blue color.
Diffuse blue of both light source and material adds more blue to the side of object facing the light.

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,0.5,1};//blue=0.5
GLfloat fLtDiffuse[4] = {0,0,1,1};//blue=1
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

// material values and code
GLfloat fMatAmbient[4] = {0,0,0.5,1};//blue=0.5
GLfloat fMatDiffuse[4] = {0,0,1,1};//blue=1
GLfloat fMatSpecular[4] = {0,0,0,1};

© 2004, Tom Duff and George Ledin Jr 47

Create brightest reddish specular color
Light’s specular red = 1, material’s specular red = 1

// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,0.5,1};
GLfloat fLtDiffuse[4] = {0,0,1,1};
GLfloat fLtSpecular[4] = {1,0,0,1}; //red = 1, green = 0, blue = 0
GLfloat light_position[] = {3, 3, 3, 0 };

glLightfv(GL_LIGHT0, GL_SPECULAR, fLtSpecular);

// material values and code
GLfloat fMatAmbient[4] = {0,0,0.5,1};
GLfloat fMatDiffuse[4] = {0,0,1,1};
GLfloat fMatSpecular[4] = {1,0,0,1}; // red = 1, green = 0, blue = 0
GLfloat fShine = 0; // when shiny = 0, we get maximum shininess

glMaterialfv(GL_LIGHT0, GL_SPECULAR, fMatSpecular);
glMaterialf(GL_FRONT, GL_SHININESS, fShine);

Note: red specular light on blue diffuse
and ambient light, produces purple specular
color on the object.

© 2004, Tom Duff and George Ledin Jr 48

How does shininess affect specular?
A value of “0” is maximum shininess; “128” is minimum shininess.

If shininess is < 0 or > 128, it takes the default value of “0”.

GLfloat fShine = 0; GLfloat fShine = 10; GLfloat fShine = 40;

GLfloat fShine = 100; GLfloat fShine = 128; GLfloat fShine = 129;

© 2004, Tom Duff and George Ledin Jr 49

What’s Emissive Light?
• In real world, In additon to reflecting light that strikes it, a surface may also emit light.

• In OpenGL, we can add an emissive term that is not affected by incoming light and
can help model visible light sources or glowing objects.

– The emissive color of a material is applied to all vertices of an object regardless of their
direction to the light.

– This blends with the ambient light color of a scene, so if you had a powerful emissive color
and low ambient lighting on everything else it might produce a slight glowing effect, although
objects of different materials around it would not be affected by it.

• Special characteristic of Emissive light:

– The emissive contribution from a surface is not used to calculate shading. Thus, a purely
emissive surface appears the same regardless of any other sources or materials.

– Emissive light is unaffected by the position of the viewer.

© 2004, Tom Duff and George Ledin Jr 50

Remember Luxo Jr from Pixar…
• In Luxo Jr short from Pixar,

there are two lamps emitting
light, which produced two
cones of light (spot light). This
is of course an exaggerated
effect.

© 2004, Tom Duff and George Ledin Jr 51

Case 11 - Study of emissive light
Case Study Setup:
• Object Setup:

Assume in the world coordinates we have one glut
sphere of radius 2, centered at (0,0,0).

glutSolidSphere (2, 100,100);

• Light’s position

GLfloat light_position[] = {3, 3, 3, 0 };
glLightfv(GL_LIGHT0,

GL_POSITION,
light_position);

• The ambient and diffuse set up:
– blue. (So that we can see the specular color better.)

Goal:
We will change the emissive value of the material to
change the color of the sphere.

Ambient, diffuse = blue

With specular and different shininess

© 2004, Tom Duff and George Ledin Jr 52

Create an object emitting green color
// material and lighting property
// lighting values and code
GLfloat fLtAmbient[4] = {0,0,0,1};
GLfloat fLtDiffuse[4] = {0,0,0,1};
GLfloat fLtSpecular[4] = {0,0,0,1};
GLfloat light_position[] = {3, 3, 3, 0 };

…

// material values and code
GLfloat fMatAmbient[4] = {0,0,0,1};
GLfloat fMatDiffuse[4] = {0,0,0,1};
GLfloat fMatSpecular[4] = {0,0,0,1};
GLfloat fMatEmissive[4] = {0,a,0,1}; //green = a
GLfloat fShine = 0;

…
glMaterialfv(GL_FRONT, GL_EMISSION, fMatEmissive);

Note:
In this example, both ambient and diffuse
Light is specifed as (0,0,0,1), which means
there is no ambient and diffuse light.

Yet, with the green emissive light defined
along, the object displays as a green light
Source.

This means emissive light does not need a
light source.

a = 1
Object is very light green

a = 0.5
Object is light green

a = 0.2
Object is dark green

a = 0
Object is black

© 2004, Tom Duff and George Ledin Jr 53

Case 12 - Another way to define material color
Let material track ambient color of light

// set the material foundation color
glColor4f(1,1,1,1); // material is set to white

// set the light’s color
GLfloat fLtAmbient[4] = { a, b, c, 1 };

//red=a,green=b,blue=c
GLfloat fLtDiffuse[4] = {1,1,1,1};
GLfloat fLtSpecular[4] = {1,1,1,1};

glEnable(GL_LIGHTING);

// Let the material track light’s ambient color
glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);
glColorMaterial(GL_FRONT,GL_SPECULAR);

a=1, b=0, c=0
red

a=0, b=1, c=0
green

a=0, b=0, c=1
blue

a=1, b=1, c=0
yellow

a=1, b=0, c=1
purple

a=0, b=1, c=1
cyan

© 2004, Tom Duff and George Ledin Jr 54

Case 13 - Another way to define material color
Let material track both ambient and diffuse color of light

// set material base color to white
glColor4f(1,1,1,1); 1// set the light’s color

GLfloat fLtAmbient[4] = { a, b, c, 1.0f };
//red=a,green=b,blue=c

GLfloat fLtDiffuse[4] = { e, f, g, 1.0f };
//red=a,green=b,blue=c

GLfloat specref[] = {0,0,0,1}; // no specular

glEnable(GL_LIGHTING);

// Let the material track light’s
// ambient and diffuse color
glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

glMaterialfv(GL_FRONT, GL_SPECULAR, specref);
// because no specular, shininess does not matter
glMateriali(GL_FRONT, GL_SHININESS, 0);

a=1, b=0, c=0
red

e=0, f=1, g=0
Green+red=yellow

a=0.5, b=0, c=0
red

e=0, f=0.7, g=0
Green + some red red + some green

a=0, b=0.5, c=0
green

e=0.7, f=0, g=0

// set material base color to grey
glColor4f(0.5,0.5,0.5,1); 2

a=1, b=0, c=0
red

e=0, f=1, g=0
Green+red=yellow

a=0.5, b=0, c=0
red

e=0, f=0.7, g=0
Green + some red

a=0, b=0.5, c=0
green

e=0.7, f=0, g=0
red + some green

Note:
Output in 1 has lighter hue than output in 2,
because output in 1 has a white sphere in its
base color, while output in 2 has a grey sphere
In its base color.

© 2004, Tom Duff and George Ledin Jr 55

Summary of Material Colors
• The OpenGL lighting model makes the approximation that a material's

color depends on the percentages of the incoming red, green, and
blue light it reflects.

– Example: a perfectly red ball reflects all the incoming red light and absorbs
all the green and blue light that strike it.

• The previous case studies show in OpenGL that the larger the value of
color X defined in light’s or material’s ambient, diffuse, and specular
components (default: (red,green,blue) = (0,0,0), which is minimum.
The maximum is: (red,green,blue) = (1,1,1))

• the more light of color X the object displays. This is how OpenGL
simulates lights shining on the objects in general.

© 2004, Tom Duff and George Ledin Jr 56

How material color is combined with lighting?

• Like lights, materials have different ambient, diffuse, and specular colors, which
determine the ambient, diffuse, and specular reflectance of the material.

– A material's ambient reflectance is combined with the ambient component of each incoming
light source

– The diffuse reflectance is combined with the light's diffuse component.

– The specular reflectance is combined with light’s specular component .

• Ambient and diffuse reflectance define the color of the material and are typically
similar but not identical.

• Specular reflectance is usually white or gray, so that specular highlights end up being
the color of the light source's specular intensity. If you think of a white light shining on
a shiny red plastic sphere, most of the sphere appears red, but the shiny highlight is
white or whitish.

• And material by itself can emit light.

© 2004, Tom Duff and George Ledin Jr 57

Same light source can create different lighting effect

• Although a light source delivers a single distribution of
frequencies, the ambient, diffuse, and specular
components might be different.

• Example:

– If you have a white light in a room with red walls, the
scattered light tends to be red, although the objects are
actually struck by white light.

© 2004, Tom Duff and George Ledin Jr 58

Summary of Default Material Properties
• You can define the material properties of the objects in the scene: the ambient, diffuse, and specular colors, the

shininess, and the color of any emitted light.

– void glMaterial{if}(GLenum face, GLenum pname, TYPE param);
– void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);

• face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the
object the material should be applied to.

Default Values for pname Parameters of glMaterial*()

© 2004, Tom Duff and George Ledin Jr 59

Summary of Default Values for pname Parameter of glLight*() which
create light sources

• You can define the light location and properties in the scene.

– void glLight{if}(GLenum light, GLenum pname, TYPE param);
– void glMaterial{if}v(GLenum light, GLenum pname, TYPE *param);

• The “light” can be LIGHT0, LIGHT1, and etc. Maximum 8 lights in OpenGL.

© 2004, Tom Duff and George Ledin Jr 60

Why does the sphere show unevenly distributed ambient and diffuse light, but the cube
displays evenly distributed light?

• Example 1 - Sphere:
– Some area of the sphere receive more light

than other areas.

• Example 2 - Cube:
– Each side of the cube shows evenly

distributed diffuse light.

© 2004, Tom Duff and George Ledin Jr 61

Case 14 – Surface Normals

Example 1
Why does the sphere show unevenly distributed ambient and diffuse light, but the cube

displays evenly distributed light?

• Reason:
– An object’s normals are perpendicular to

the object surface.

– An object's normals determine its
orientation relative to the light sources.

– For each vertex, OpenGL uses the
assigned normal to determine how
much light that particular vertex receives
from each light source.

– How much light a vertex on the object
gets is determined by the cos(alpha)s,
where alpha is the angle between the
normal of the vertex and light, and s is
the light intensity. We will discuss “s”
later.

• When alpha is 0, cos(0)=1, the
vertex gets the most light. With
higher alpha, the vertex gets less
light.

Example 1 - Sphere Example 2 - Cube

© 2004, Tom Duff and George Ledin Jr 62

Case 14 – Surface Normals

Example 1, continued
OpenGL defines its glut objects’s normals perpendicular to their surface

Example 1 - Sphere• Glut object such as glutSolid Sphere
and glutSolidCube have defined
normals in their routines.

– Example 1 uses glutSolidSphere to
define a sphere.

– Example 2 uses glutSolidCube to
define a cube.

• When we create our own objects, we
need to define normals.

Example 2 - Cube

© 2004, Tom Duff and George Ledin Jr 63

How to define our own object surface normals?
• All surface normals must eventually be converted to unit normals in

OpenGL.

• A unit normal is just a normal vector of length of 1.

• You can tell OpenGL to convert your normals to unit normals automatically
by enabling normalization with glEnable(GL_NORMALIZE).

– However, this has performance penalties. It’s far better to calculate your
normals ahead of time instead of relying on OpenGL to do this for you.

– Remember that when you use glScale transformation function, it also scales
the lengths of your normals.

© 2004, Tom Duff and George Ledin Jr 64

Case 14 – Example 2
Define unit normal

// define a triangle object to be drawn
void triangle()

{
// define unit normal

glNormal3f(0,0,1);
// draw a triangle with three vertexes
glVertex3f(2,0,0);
glVertex3f(-2,0,0);
glVertex3f(0,2,0);

glEnd();
}

// lighting effect
GLfloat light_position[] = {0,0,2,0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

Before Lighting After applying lighting

© 2004, Tom Duff and George Ledin Jr 65

Case 14 – Example 3

Convert non-unit normal to unit normal using glEnalbe(GL_NORMALIZE)
// define a triangle object to be drawn
void triangle()

{
glEnable(GL_NORMALIZE);
glBegin(GL_TRIANGLES);

// define a non-unit normal
glNormal3f(0,0,2);
// draw a triangle with three vertexes
glVertex3f(2,0,0);
glVertex3f(-2,0,0);
glVertex3f(0,2,0);

glEnd();
}

// lighting effect
GLfloat light_position[] = {0,0,2,0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

Without glEnable(NORMALIZE)
unable to see object

With glEnable(NORMALIZE)
able to see object

Note:
Using glEnable(GL_NROMALIZE)
has performance penalties.

© 2004, Tom Duff and George Ledin Jr 66

Case 14 – Example 4
Write a function that can reduce any normal vector to unit normal vector

// reduce any nromal vector to unit normal vector
void ReduceToUnitVector(float vector[3])

{
float length;

// Calculate the length of the vector
length = (float)sqrt((vector[0]*vector[0]) +

(vector[1]*vector[1]) +
(vector[2]*vector[2]));

// avoid deviding by zero by providing an
// acceptable value for vectors too close to zero.

// Dividing each vector by the length will result
// in a unit vector.
vector[0] /= length;
vector[1] /= length;
vector[2] /= length;
}

// An example of using ReduceToUnitVector to convert
// normal vector
// {0,0,2} to unit vector
void triangle()

{
float v[3] = {0,0,2};

ReduceToUnitVector(v);
glBegin(GL_TRIANGLES);

glNormal3fv(v);
glVertex3f(2,0,0);
glVertex3f(-2,0,0);
glVertex3f(0,2,0);

glEnd();
}

output

After converting (0,0,2)
to unit vector, we get
unit vector (0,0,1)

© 2004, Tom Duff and George Ledin Jr 67

Case 14 – Example 5

The larger the angle, alpha, between normal and light the darker the object.

void triangle()
{
float v[3] = {1,1,1}; //define a normal vector

ReduceToUnitVector(v); // normalize normal
glBegin(GL_TRIANGLES);

glNormal3fv(v); // define surface normal
glVertex3f(2,0,0);
glVertex3f(-2,0,0);
glVertex3f(0,2,0);

glEnd();
}

// lighting effect
GLfloat light_position[] = {0,0,2,0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

Surface normal (0,0,1)
Light direction (0,0,2)

Angle between normal and light = 0

Surface normal (1,1,1)
Light direction (0,0,2)

Angle between normal and light > 0

© 2004, Tom Duff and George Ledin Jr 68

Case 14 – Example 6

A function to calculate normal from any three vertices

// A generic function which calcuate normal from
// any three vertices from a surface
// Points p1, p2, & p3 specified in counter clock-wise order
void CalcNormal(float v[3][3], float out[3])

{
float v1[3],v2[3];
static const int x = 0;
static const int y = 1;
static const int z = 2;

// Calculate two vectors from the three points
v1[x] = v[0][x] - v[1][x];
v1[y] = v[0][y] - v[1][y];
v1[z] = v[0][z] - v[1][z];

v2[x] = v[1][x] - v[2][x];
v2[y] = v[1][y] - v[2][y];
v2[z] = v[1][z] - v[2][z];

// Take the cross product of the two vectors to get
// the normal vector which will be stored in out
out[x] = v1[y]*v2[z] - v1[z]*v2[y];
out[y] = v1[z]*v2[x] - v1[x]*v2[z];
out[z] = v1[x]*v2[y] - v1[y]*v2[x];

// Normalize the vector (shorten length to one)
ReduceToUnitVector(out);
}

© 2004, Tom Duff and George Ledin Jr 69

Case 14 – Example 7 -Normal Averaging

• Normal Averaging
– For smooth surface, we can approximate

normals to each face of the surface in order to
produce apparently smooth surfaces with flat
polygons.

• A sphere made of quads and triangles:

• The polygonal representation of a sphere is only an
approximation of the true surface. Theoretically, if
we used enough polygons, the surface will appear
smooth.

• For the above sphere, the normals would point
directly out from the center of the sphere through
each vertex.

• Each normal will be perpendicular to the tangent
line to the surface. (See picture on the right)

For a sphere, the calculation of normals is
very simple, because the normal has the
same value as the vertex.

© 2004, Tom Duff and George Ledin Jr 70

Case 14 – example 8
flat shading vs smooth shading

// smooth shading
glShadeModel (GL_SMOOTH);

// draw an inadequently tessellated sphere,
// a sphere made up of few polygons
glutSolidSphere (2, 10,10);

// shine light diagonally
GLfloat light_position[] = {2,2,2,0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0,
GL_POSITION,
light_position); // flat shading

glShadeModel (GL_FLAT);

glutSolidSphere automatically calculates normal of each
polygon of the sphere.

• With smooth shading, there is a color/shade
interpolation between different vertices of the polygons
of the sphere.

• But with flat shading, there is no color/shade
interpolation.

© 2004, Tom Duff and George Ledin Jr 71

Case 15 – multiple light source
• Case Study Setup:
• Object Setup:
• Assume in the world coordinates we have

one glut sphere of radius 2, centered at (0,0,0).

• glutSolidSphere (2, 100,100);

• Light 0’s specifications

GLfloat light_position1[] = {2,2,2,1};
GLfloat spot_light_direction[] ={-1,-1,-1,1};
GLfloat fLtAmbient1[4] = { 0, 1, 0, 1 };
GLfloat fLtDiffuse1[4] = { 0, 1, 0, 1 };
GLfloat fLtSpecular1[4] = {1,1,0,1};

• Light 1’s specification

GLfloat light_position2[] = {-2,-2,2,0};
GLfloat fLtAmbient2[4] = { 1, 0, 0, 1 };
GLfloat fLtDiffuse2[4] = { 1, 0, 0, 1 };
GLfloat fLtSpecular2[4] = {0,0,1,1};

Goal:
We will specify two different light sources (at different
locations) to shine on one sphere to find out how
mutiple lighting works in OpenGL.

LIGHT1 onlyLIGHT0 only

LIGHT0 + LIGHT1

© 2004, Tom Duff and George Ledin Jr 72

Case 15 – multiple light source – example 1
• GL_LIGHT0 shines diffuse

white and specular white by
default; all the other lights
(LIGHT1, LIGHT2 and others)
shine diffuse black and
specular black.

• Therefore, to see any light
effect of LIGHT1, LIGHT2 and
others, we need to enable
ambient, diffuse or specular
light for them.

© 2004, Tom Duff and George Ledin Jr 73

OpenGL Commands
• glMaterial{if}(face, parameter, value)

– Changes one of the coefficients for the front or back side of a face (or both sides)

• glLight{if}(light, property, value)
– Changes one of the properties of a light (intensities, positions, directions, etc)

– There are 8 lights: GL_LIGHT0, GL_LIGHT1, …

• glLightModel{if}(property, value)
– Changes one of the global light model properties (global ambient light, for instance)

• glEnable(GL_LIGHT0) enables GL_LIGHT0
– You must enable lights before they contribute to the image
– You can enable and disable lights at any time

© 2004, Tom Duff and George Ledin Jr 74

Direction light vs spot light
Spotlight can specify GL_SPOT_EXPONENT, but direction light can’t

// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light, light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,50);

// direction light direction
GLfloat light_position[] = {3, 3, 3, 0};

glEnable(GL_LIGHTING); // Enable light

glEnable(GL_LIGHT0); // Enable one
light, light0

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,50);

© 2004, Tom Duff and George Ledin Jr 75

Adds color into spot light’s ambient component
// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };
GLfloat fLtAmbient1[4] = { 1, 0, 0, 1 }; //red

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light, light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient1);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,50);

Before adding red ambient to spotlight
See default white colored spot

After adding ambient red to spotlight
See reddish spot

© 2004, Tom Duff and George Ledin Jr 76

Adds ambient color into spotlight’s and enable material color

// sphere’s material color
glColor4f(a,b,c,1); //red=a,green=b,blue=c

Before turn on material-track-ambient-light
See reddish spot (material color has no effect)

// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };
GLfloat fLtAmbient1[4] = { 1, 0, 0, 1 }; //red

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light,
light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient1);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,50);

After turnong material-tracking-ambient-light

a=1,b=1,c=0 (yellow)
Material yellow shows up

in the spotlight
Red+yellow = pink

a=1,b=1,c=1 (white)
Material white shows up

in the spotlight

// enable material color
glEnable(GL_COLOR_MATERIAL); When enable material color,

material color will be mixed with light’s color

© 2004, Tom Duff and George Ledin Jr 77

Adds color into spotlight’s diffuse component
// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };
GLfloat fLtDiffuse[4] = { 1, 0, 0, 1 }; //red

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light, light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, fLtDiffuse);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,50);

Before adding red ambient to spotlight
See default white colored spot

After adding diffuse green to spotlight
See green spot

© 2004, Tom Duff and George Ledin Jr 78

Adds ambient color into spotlight’s and enable material-track-ambient-light

// sphere’s material color
glColor4f(a,b,c,1); //red=a,green=b,blue=c

// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };
GLfloat fLtAmbient1[4] = { 1, 0, 0, 1 }; //red

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light,
light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

glLightfv(GL_LIGHT0, GL_AMBIENT, fLtAmbient1);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,128);

Before turn on material-track-ambient-light
See reddish spot (material color has no effect)

After turnong material-tracking-ambient-light

a=1,b=1,c=1 (white)
Material white shows up

in the spotlight,
make red spot brighter

a=1,b=1,c=0
Material blue shows up

in the spotlight

// enable materialcolor
glEnable(GL_COLOR_MATERIAL);

© 2004, Tom Duff and George Ledin Jr 79

Adds color into spot light’s diffuse component
// spotlight position
GLfloat light_position[] = {3, 3, 3, 1};
GLfloat spot_light_direction[] = {-1, -1, -1 };
GLfloat fLtDiffuse[4] = { 0, 1, 0, 1 };

glEnable(GL_LIGHTING); // Enable light
glEnable(GL_LIGHT0); // Enable one light,
light0

// light cut-off is 45, cone angle is 90 degree
glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

// specify spotlight position at (3,3,3)
glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

glLightfv(GL_LIGHT0, GL_DIFFUSE, fLtDiffuse1);

// specify the spotlight direction
glLightfv(GL_LIGHT0,

GL_SPOT_DIRECTION,
spot_light_direction);

// spotlight intensity
glLightf(GL_LIGHT0, GL_SPOT_EXPONENT,128);

After adding green ambient and diffuse to spot light
Default is white

Before adding green ambient to spot light

© 2004, Tom Duff and George Ledin Jr 80

© 2004, Tom Duff and George Ledin Jr 81

– New to OpenGL 1.2 is
GL_RESCALE_NORMALS
.
glEnable(GL_SCALE_NOR
MALS) allows you to scale
all the normals by the same
amount to make them unit
length.

• OpenGL figures this out
by examing the modelview
matrix. This results fewer
mathematical operations
per vertex than are
otherwise required.

© 2004, Tom Duff and George Ledin Jr 82

Define Normal Vectors for Each Vertex of Every Object

• An object's normals
determine its orientation
relative to the light
sources.

• For each vertex, OpenGL
uses the assigned normal
to determine how much
light that particular vertex
receives from each light

source.

• In this example, we use glut object
glutSolidCube, which has defined
normal as part of its routine.

• glutSolidSphere (2.0)

© 2004, Tom Duff and George Ledin Jr 83

How to create light growing effect?

© 2004, Tom Duff and George Ledin Jr 84

Overview of how to create lighting in OpenGL
• Before Start:

0. Determine the world coordinates

• Main Steps:

1. Define Normal Vectors for Each Vertex of Every Object

2. An object's normals determine its orientation relative to the
light sources.

3. Create, Position, and Enable One or More Light Sources

4. Select a Lighting Model

5. Define Material Properties for the Objects in the Scene

© 2004, Tom Duff and George Ledin Jr 85

How to keep the light Stationary?
• Keeping the Light Stationary
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)

glOrtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -
10.0, 10.0);

else
glOrtho (-1.5*w/h, 1.5*w/h, -1.5, 1.5, -
10.0, 10.0);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
…
/* later in init() */
GLfloat light_position[] = { 1.0, 1.0, 1.0,

1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, position);
/* NO other MODELVIEW transformation is set…*/

• Answer:

– After setting the light position

© 2004, Tom Duff and George Ledin Jr 86

(3) Select a Lighting Model
void init(void)
{

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = { 50.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

SetBackground(1,1,1,0);
glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT0, // default color is white
GL_POSITION, // use light position for
lighting
light_position); // light’s position

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);

}

• This example uses the default settings for
these two aspects of the light model.

– an infinite viewer

• Using a local viewer adds
significantly to the complexity of
the calculations that must be
performed, because OpenGL
must calculate the angle between
the viewpoint and each object.

– One sided lighting

• Lighting calculations on the front
facing only.

• If you need to specify Light Model, use
glLightModel*() function.

© 2004, Tom Duff and George Ledin Jr 87

Selecting a Lighting Model
• The OpenGL notion of a lighting model has three components:

– The global ambient light intensity

– Whether the viewpoint position is local to the scene or considered to be an
infinite distance away

– Whether lighting calculations should be performed differently for both the
front and back faces of objects

• void glLightModel{if}(GLenum pname, TYPE param);

• void glLightModel{if}v(GLenum pname, TYPE *param);

Default values for Lighting Model

© 2004, Tom Duff and George Ledin Jr 88

Define Material Properties for the objects in the scene
void init(void)
{

GLfloat mat_specular[] = { 1.0, 1.0, 1.0,
1.0 };
GLfloat mat_shininess[] = { 50.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0,
0.0 };

SetBackground(1,1,1,0);
glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR,
mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS,
mat_shininess);

glLightfv(GL_LIGHT0, // default color is
white
GL_POSITION, // use light position
for lighting
light_position); // light’s position

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);

}

• You can specify a material's
ambient, diffuse, and specular
colors and how shiny it is.

• In this example, only these last
two material properties—the
specular material color and
shininess—are explicitly specified
(with the glMaterialfv() calls).

© 2004, Tom Duff and George Ledin Jr 89

Position and Attenuation
• There are two kinds of light source.

– Directional light source: the effect of an
infinite location is that the rays of light
can be considered parallel by the time
they reach an object.

– Positional light source: Its exact
position within the scene determines
the effect it has on a scene and,
especially, the direction from which the
light rays come.

• We use directional light source for the
sphere.

GLfloat light_position[] = { 1.0, 1.0,
1.0, 0.0 };

glLightfv(GL_LIGHT0, GL_POSITION,
light_position);

• You supply a vector of four values (x, y, z, w) for the
GL_POSITION parameter. If the last value, w, is
zero, the corresponding light source is a directional
one, and the (x, y, z) values describe its direction.

• Otherwise, diffuse and specular lighting calculations
are based on the actual location of the light in eye
coordinates, and attenuation is enabled.

© 2004, Tom Duff and George Ledin Jr 90

Light Attenuation Formula
• For a directional light where light is

infinitely far away, attenuation is
disabled for a directional light.

• However, you might want to attenuate
the light from a positional light.

• OpenGL attenuates a light source by
multiplying the contribution of that
source by an attenuation factor:

Example of attenuation constance specification:

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);

glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

© 2004, Tom Duff and George Ledin Jr 91

Spotlights
• You can have a positional light source act as

a spotlight—that is, by restricting the shape
of the light it emits to a cone.

• To create a spotlight, you need to determine
the spread of the cone of light you desire,
which is called GL_SPOT_CUTOFF
Parameter.

• Note that no light is emitted beyond the
edges of the cone. By default, the spotlight
feature is disabled because the
GL_SPOT_CUTOFF parameter is 180.0.
This value means that light is emitted in all
directions (the angle at the cone's apex is
360 degrees)

• The value for GL_SPOT_CUTOFF is
restricted to being within the range [0.0,90.0]
(unless it has the special value 180.0).

© 2004, Tom Duff and George Ledin Jr 92

Example of Spot light
• // sets the cutoff parameter to 45

degrees
– glLightf(GL_LIGHT0,

GL_SPOT_CUTOFF, 45.0);

• // specify a spotlight's direction,
which determines the axis of the cone
of light:
– GLfloat spot_direction[] = { -

1.0, -1.0, 0.0 };
glLightfv(GL_LIGHT0,
GL_SPOT_DIRECTION,
spot_direction);

© 2004, Tom Duff and George Ledin Jr 93

Creating Light Sources
• Default Values for pname Parameter of

glLight*()
• GL_AMBIENT (0.0, 0.0, 0.0, 1.0)

– ambient RGBA intensity of lightGL_
• DIFFUSE (1.0, 1.0, 1.0, 1.0)

– diffuse RGBA intensity of lightGL_
• SPECULAR (1.0, 1.0, 1.0, 1.0)

– specular RGBA intensity of light
• GL_POSITION (0.0, 0.0, 1.0, 0.0)

– (x, y, z, w) position of light
• GL_SPOT_DIRECTION (0.0, 0.0, -1.0)

– (x, y, z) direction of spotlight
• GL_SPOT_EXPONENT 0.0

– spotlight exponent
• GL_SPOT_CUTOFF 180.0

– spotlight cutoff angle
• GL_CONSTANT_ATTENUATION 1.0

– constant attenuation factor
• GL_LINEAR_ATTENUATION 0.0

– linear attenuation factor
• GL_QUADRATIC_ATTENUATION 0.0

– quadratic attenuation factor

• pname

• Specifies a light source parameter for
light.

– GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION,
GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION,
GL_QUADRATIC_ATTENUATION

	LecturesDirectional Light Case Study
	How does light work?
	Directional Light vs Spot Light
	Directional lightGeneral Questions
	Case Study 1 Generic Directional Light Case
	Case Study 2Directional Lighting
	Directional Lighting Set up the Projection View and Model View
	Directional Lighting Set up one light source and the direction of the lightExample 1
	Directional Lighting Set up light source and the direction of the lightExample 2
	Directional Lighting Set up light source and the direction of the lightExample 3
	Directional Lighting Set up light source and the direction of the lightExample 4 (default)
	Directional Lighting Set up light source and the direction of the lightExample 5 (a slight light position variation from exa
	Directional Lighting Set up light source and the direction of the lightExample 6
	Camera’s position, not where the camera is aiming at, affect light’s position
	Case Study 3 Directional Light with Camera at location other than (0,0,0)
	Case Study 3 Directional Light with Camera at location (0,0,1), aiming at (0,0,-1)
	Case Study 3 - Compare Two Cases1. Camera at (0,0,0), aiming at (0,0,-1). glLight’s direction vector (2,-2,0)2. Camera at l
	What’s ambient light?
	Case 4Study of ambient light
	The code for light setting Later on, we will change “a” and “b” to see changes in the color of the sphere.
	Ambient light does not have direction
	Case 1 shows that the sphere is black, because both ambient material’s blue and ambient light’s blue is set to 0.
	In Case 2, although material’s ambient blue is maximum, 1, light’s ambient blue = 0, therefore, the object is dark blue.
	Case 4 is blue lit lighter than in Case 3. Case 7 is blue lit lighter than in Case 6. This is because the material’s ambient b
	Case 8 shows a blue sphere lit lightest, because both material’s ambient blue and light’s ambient blue are set to maximum 1.
	Case 5The following three spheres display level 0, blue not lit, because as long as the light’s blue component is “0”, altho
	Case 6All the following three display black ball, because the material has no color.
	Conclusions about ambient components of light and material
	Conclusion about ambient components of light and material, Continued …
	What’s diffuse light?
	Case 7Study of diffuse light
	The code for light setting Later on, we will change “a” and “b” to see what color will the sphere be displayed.
	Diffuse takes the direction of light.
	Case 1 shows that the sphere is black, because both material’s diffuse green and light’s diffuse green is set to 0.
	In Case 2, although material’s diffuse green is maximum, 1, but light’s diffuse blue = 0, therefore, the object is green hardl
	Case 3 is green lighter lit than case 4. Case 6 is green lighter lit than case 7. This is because the material’s diffuse green
	Case 4 shows that the sphere is green lit strongest, because both material’s diffuse green and light’s diffuse green is set to
	Case 8The following three display level 0, green hardly lit, because as long as the light’s diffuse green component is “0” (
	Conclusion about diffuse components of light and material
	Conclusion about diffuse components of light and material, Continued …
	Case 9Combining ambient and diffuse light
	What’s Specular Light?
	Case 10Study of specular light
	What’s Emissive Light?
	Remember Luxo Jr from Pixar…
	Case 11 - Study of emissive light
	Case 12 - Another way to define material colorLet material track ambient color of light
	Case 13 - Another way to define material colorLet material track both ambient and diffuse color of light
	Summary of Material Colors
	How material color is combined with lighting?
	Same light source can create different lighting effect
	Summary of Default Material Properties
	Summary of Default Values for pname Parameter of glLight*() which create light sources
	Why does the sphere show unevenly distributed ambient and diffuse light, but the cube displays evenly distributed light?
	Case 14 – Surface NormalsExample 1Why does the sphere show unevenly distributed ambient and diffuse light, but the cube dis
	Case 14 – Surface NormalsExample 1, continuedOpenGL defines its glut objects’s normals perpendicular to their surface
	How to define our own object surface normals?
	Case 14 – Example 2Define unit normal
	Case 14 – Example 3Convert non-unit normal to unit normal using glEnalbe(GL_NORMALIZE)
	Case 14 – Example 4Write a function that can reduce any normal vector to unit normal vector
	Case 14 – Example 5The larger the angle, alpha, between normal and light the darker the object.
	Case 14 – Example 6A function to calculate normal from any three vertices
	Case 14 – Example 7 -Normal Averaging
	Case 14 – example 8 flat shading vs smooth shading
	Case 15 – multiple light source
	Case 15 – multiple light source – example 1
	OpenGL Commands
	Direction light vs spot lightSpotlight can specify GL_SPOT_EXPONENT, but direction light can’t
	Adds color into spot light’s ambient component
	Adds ambient color into spotlight’s and enable material color
	Adds color into spotlight’s diffuse component
	Adds ambient color into spotlight’s and enable material-track-ambient-light
	Adds color into spot light’s diffuse component
	
	
	Define Normal Vectors for Each Vertex of Every Object
	How to create light growing effect?
	Overview of how to create lighting in OpenGL
	How to keep the light Stationary?
	(3) Select a Lighting Model
	Selecting a Lighting Model
	Define Material Properties for the objects in the scene
	Position and Attenuation
	Light Attenuation Formula
	Spotlights
	Example of Spot light
	Creating Light Sources

