
© 2004, Tom Duff and George Ledin Jr 1

Lectures
OpenGL Introduction

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

What is OpenGL®

• OpenGL (Open Graphics Library) was developed originally by SGI
(Silicon Graphics Incorporated)

• Utilities in OpenGL library can be called from C, C++

• Bindings available also for other programming languages such as
Java, Tcl, Python, Ada, and Fortran

• Built on graphics hardware and works fast

• Portable to most other systems and able to use other architectures’
graphics capabilities

© 2004, Tom Duff and George Ledin Jr 3

What does OpenGL do and not do
• Generates objects made of points, lines, and polygons

• Controls over lighting, object surface properties, transparency, anti-
aliasing and texture mapping

• Window management is not supported in the basic version of
OpenGL

• However there are additional libraries built on top of OpengGL to do
what OpenGL does not support

© 2004, Tom Duff and George Ledin Jr 4

OpenGL Family
• GL

– The basic Graphics Library. Simple essential commands, e.g. glEnable();
– To use it, you must #include <GL/gl.h>

• GLU
– Graphics Library Utilities.
– More complex commands, e.g. drawing a cylinder, routines for setting up viewing and

projection matrices, polygonal tesselation and surface rendering.
– To use it, you must #include <GL/glu.h>

• GLUT
– Graphics Library Utilities Toolkit.
– More sophisticated windowing features, e.g., sphere
– To use it, you must #include <GL/glut.h>

• GLX
– Graphics Library for X-windows
– Commands for drawing GL shapes in X

• If you use OpenGL in Windows, you should #include <windows.h>

© 2004, Tom Duff and George Ledin Jr 5

How to use OpenGL
• The functions in gl library have names that begin with gl.

– eg: glVertex3f() (drawing a vertex)

• The functions in glu library have names that begin with glu.

– eg: gluOrtho2D() (setting up orthogonal view)

• The functions in glut library have names that begin with glut.

– eg: glutReshapeFunc() (invoked when user changes the window size)

© 2004, Tom Duff and George Ledin Jr 6

OpenGL Graphics Pipeline

© 2004, Tom Duff and George Ledin Jr 7

Projection and Viewport

© 2004, Tom Duff and George Ledin Jr 8

Orthogonal Projection
• Orthographic projection is used for 2D drawing

Perspective projection is often used for 3D drawing

• 2D Viewing: Orthographic View

– gluOrtho2D(left, right, bottom, top)
• Specifies the coordinates of 2D region to be projected into

the viewport.

© 2004, Tom Duff and George Ledin Jr 9

Viewport
• Viewport

– The sub-window into which the current graphics are being
drawn.

• glViewport(x, y, width, height)

– OpenGL assumes that you are mapping your graphics to the
entire screen window by default.

– (x, y) is the lower-left corner of the viewport.

© 2004, Tom Duff and George Ledin Jr 10

How to draw a simple square in OpenGL
/* SimpleSquare.c
* This program draws a white square outline on a black background.
*/
#include <windows.h>
#include <GL/glut.h> /* glut.h includes gl.h and glu.h*/

void display(void)
{
/* set the clear value for the buffer to white for white background */

glColor3f(0.0,0.0,0.0);
/* Clear color buffer with the current clear value.

If not, you will see background behind your screen window */
glClear(GL_COLOR_BUFFER_BIT);

/* draw white polygon (rectangle) outline centered at (0,0) */
glPolygonMode(GL_FRONT, GL_LINE);

/* draw unit square polygon centered at (0,0) */
glBegin(GL_POLYGON);

/* set the points counter clockwise for the front of the polygon
If not, you will not see the outline, you will see solid color instead */

glVertex2f (-0.5, -0.5); /* left bottom corner */
glVertex2f (0.5, -0.5); /* right bottom corner */
glVertex2f (0.5, 0.5); /* right top corner */
glVertex2f (-0.5, 0.5); /* left top corner */

glEnd();

/* force execution of GL commands */
glFlush();

}

© 2004, Tom Duff and George Ledin Jr 11

How to draw a simple square in OpenGL, Continued
void main(int argc, char** argv)
{
// glutInit glutInit will initialize the GLUT library and
// negotiate a session with the windows system. Also, it
// extracts any command line options understood by the GLUT library.

glutInit(&argc,argv);

/* Initialize mode and open a window in upper left corner of your screen
*/

// Specify the window size 400 * 400 pixels
glutInitWindowSize(400,400);
glutCreateWindow("Simple Square");

/* Set background color as white by clearing color buffer with white
color */
glClearColor (1.0, 1.0, 1.0, 0.0);
glutDisplayFunc(display);

/* glutMainLoop enters the GLUT event processing loop.
This routine should be called at most once in a GLUT program.
Once called, this routine will never return.
It will call as necessary any callbacks that have been registered. */
glutMainLoop();

}

© 2004, Tom Duff and George Ledin Jr 12

World Coordinates World Window Screen Window

• World Coordinates
– The real world coordinates.

• World Window/World Coordinate Frame
– The window/frame which models the world

coordinates

• Screen Window
– The screen which displays objects mapped from

the World Coordinates Frame

© 2004, Tom Duff and George Ledin Jr 13

Understanding Screen Window and World Window (Orthogonal Projection) - Part 1

Question: How to draw a line on the Screen Window using World Coordinates?

The aspect ratio of Screen Window:
400:300 = 4:3

The aspect ratio of World Window:
200:150 = 4:3

Answer:
The following steps are needed:

(1) Set up World Window Coordinates. In this case the lower left corner is (0,0), and the upper right corner is (200, 150) .

(2) If you want your object to display proportionally on the Screen, the aspect ratio of the Screen window needs to match the
aspect ratio of the World window.

© 2004, Tom Duff and George Ledin Jr 14

Understanding Screen Window and World Window (Orthogonal Projection) - Part 2

Question: What will happen if you resize the window?

Window1:

Aspect ratio of Screen Window:
400:300=4:3

Aspect ratio of World Window
(orthogonal projection):
200:150=4:3

Window2:

Aspect ratio of Screen Window:
800:300=8:3

Aspect ratio of World Window
(orthogonal projection):
200:150=4:3

Window3:

Aspect ratio of Screen Window:
400:600=2:3

Aspect ratio of World Window
(orthogonal projection):
200:150=4:3

Answer:
• If you don't adjust the aspect ratio of the World Window coordinates, after you resize the Screen Window,

the objects in the Screen Window will appear distorted and their original proportions will change.

© 2004, Tom Duff and George Ledin Jr 15

Understanding Screen Window and World Window (Orthogonal Projection) - Part 3
Question: How to keep the proportions of the object when the Screen Window is resized?

Window1:

Aspect ratio of Screen Window:
400:300=4:3

Aspect ratio of World Window
(orthogonal projection):
200:150=4:3

Window2:

Aspect ratio of Screen Window:
800:300=8:3

Aspect ratio of World Window
(orthogonal projection):
200*2:150=8:3

Window3:

Aspect ratio of Screen Window:
400:600=2:3

Aspect ratio of World Window
(orthogonal projection):
200:150*2=2:3

Answer:
If you would like to keep the distort the original proportion of your objects, you need to adjust your

World Window coordinate’s aspect ratio to be the same as the aspect ratio of the Screen Window.

© 2004, Tom Duff and George Ledin Jr 16

Understanding Screen Window and World Window (Orthogonal Projection) - Part 4

Question: How to keep the object in the center of the Screen Window as it resizes?

Window1:

Aspect ratio of Screen Window: 400:300=4:3
Aspect ratio of World Window
(orthogonal projection):
(100-(-100)):(75-(-75))=4:3

Window2:

Aspect ratio of Screen Window: 800:300=8:3
Aspect ratio of World Window
(orthogonal projection):
(200-(-200)):(75-(-75))=8:3

Window 3:

Aspect ratio of Screen Window: 400:600=2:3
Aspect ratio of World Window
(orthogonal projection):
(100-(-100)):(150-(-150))=2:3

Note:
The aspect ratio of Screen Window
and the World Window is the same,
therefore, the line proportion is not
distorted.

Answer:

* If you want your original object to stay in the center of the Screen Window, when you set up your World Window coordinates,
make the center to be (0,0) (instead of the lower left corner which is the default 0,0)).

© 2004, Tom Duff and George Ledin Jr 17

Understanding Screen Window and World Window (Orthogonal Projection) - Part 5

Question: How to keep the object the same shape automatically after resizing the Screen Window?

© 2004, Tom Duff and George Ledin Jr 18

© 2004, Tom Duff and George Ledin Jr 19

Example of glViewport
• Assume the output for the following viewport is (A).

– w = width of the screen

– h = height of the screen

– glViewport(0, 0, w, h);

• Then the output for the following viewport is (B).

– glViewport(0, 0, w/2, h/2);

(A) (B)

© 2004, Tom Duff and George Ledin Jr 20

Viewport Code Segment A
•Polygon_viewport.c

void reshape (int w, int h)
{
glClearColor (1.0, 1.0, 1.0, 0.0); // set white

background
/* initialize viewport */

// The lower corner of the viewport is (0,0).
// The height is h and width is w.
glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho2D(0.0, 1.0, 0.0, 1.0);
glMatrixMode(GL_MODELVIEW);

}

void display(void)
{ …
/* draw white polygon (rectangle) with corners at
(0.25, 0.25, 0.0) and (0.75, 0.75, 0.0) */
glColor3f (0.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);

glEnd();
…
}

• w = width of the screen

• h = height of the screen

• glViewport(0, 0, w, h);

© 2004, Tom Duff and George Ledin Jr 21

Viewport Code Segment B
• w = width of the screen

• h = height of the screen

• glViewport(0, 0, w/2, h/2);

•Polygon_viewport.c

void reshape (int w, int h)
{
glClearColor (1.0, 1.0, 1.0, 0.0); // set white

background
/* initialize viewport */
// The lower corner of the viewport is (0,0).
// The height is h/2 and width is w/2.

glViewport(0, 0, w/2, h/2);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho2D(0.0, 1.0, 0.0, 1.0);
glMatrixMode(GL_MODELVIEW);

}

void display(void)
{ …
/* draw white polygon (rectangle) with corners at
(0.25, 0.25, 0.0) and (0.75, 0.75, 0.0) */
glColor3f (0.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 22

Viewport Code Segment, Continued

• Polygon_viewport.c

void main(int argc, char** argv)
{

…
/* A reshape callback is also triggered immediately before a window's
first display callback after a window. (In this case) The reshape
callback is triggered when a window is reshaped. */

glutReshapeFunc(reshape);
…
glutMainLoop(); // process all events

}

© 2004, Tom Duff and George Ledin Jr 23

Overview of Some Basic OpenGL Functions

• Basic data types

• Graphic primitives

• Glu Objects

• Glut Objects

• Color attributes

© 2004, Tom Duff and George Ledin Jr 24

OpenGL data types
• F GLfloat #define GLfloat float

• I Glint #define GLint int

• D GLdouble #define GLdouble double

• S GLshort #define GLshort short

• B GLbyte #define GLbyte char

…
• (For more information see ‘gl.h’)

© 2004, Tom Duff and George Ledin Jr 25

OpenGL Primitives
• In OpenGL, the programmer is provided the following primitives for use in constructing

geometric objects.

• Each geometric object is described by a set of vertices and the type of primitive to be drawn.
Whether and how the vertices are connected is determined by the primitive type.

• We will look at these primitives in detail later.

© 2004, Tom Duff and George Ledin Jr 26

Glu Objects
• Glu has a few objects defined.

• These objects are sphere,
cylinder, disk, partial disk.

• We will look at these objects in
detail later.

© 2004, Tom Duff and George Ledin Jr 27

Glut Objects
• Glut has a few objects defined.

You can use them with a
single function call.

• These objects are sphere,
cone, torus, tetrahedron,
octahedron, docecahedron,
isoahedron, and teapot.

• We will look at these objects in
detail later.

© 2004, Tom Duff and George Ledin Jr 28

OpenGL Color Attributes
• OpenGL supports two basic color modes

– RGB (or RGBA)

• Each color is a triplet of red, green, blue values

• Our eyes add these primary colors to form the color that we see. The
addictive mode is appropriate for monitors and projective systems.

• In RGBA mode, the use fourth component is alpha (opacity).

• E.g:
– (1.0, 0.0, 0.0, 0.0) is bright red and transparent.
– (1.0. 1.0, 1.0, 1.0) is white and opaque.
– (0.0, 0.0, 0.0, 0.0) is black and transparent.
– (0.0, 1.0, 0.0, 0.5) is green and translucent.

© 2004, Tom Duff and George Ledin Jr 29

A note on color index mode
• Color index mode

– Colors are specified as indices into a table of red,
green, and blue values.

– With inexpensive memory, this mode is not used
often.

• We shall always use RGB/RGBA color.

© 2004, Tom Duff and George Ledin Jr 30

Colors are part of OpenGL state
• In OpenGL, colors are part of the OpenGL state.

– Colors are not attached to objects, but rather
to the internal state of OpenGL.

– The color used to render an object is the
current color.

© 2004, Tom Duff and George Ledin Jr 31

OpenGL Color Usages

(1)Setting Initial Display Mode for Colors

(2)Clear color buffer

(3)Set background color

(4)Set object color

• OpenGL has many default settings, if you
skip a step.

© 2004, Tom Duff and George Ledin Jr 32

(1) Setting Initial Display Mode for Colors

• The initial display mode is used when creating windows.

• If you don’t set a specific mode, OpenGL uses its default

• void glutInitDisplayMode (unsigned int mode);

– sets the initial display mode.

– mode for color

• GLUT_RGBA
– Bit mask to select an RGBA mode window. This is the default if neither GLUT_RGBA nor GLUT_INDEX are

specified.

• GLUT_RGB
– Does the same thing as RGBA, but it does not have the alpha (opacity) parameter.

• GLUT_INDEX

• Glut Display mode, normally the bitwise OR-ing of GLUT display mode bit masks.

– E.g. glutInitDisplayMode(GLUT_RGBA|GLUT_DEPTH)

• Set the Display mode to RGBA and request a window with depth buffer.

© 2004, Tom Duff and George Ledin Jr 33

(2) Clear Color Buffer

• We need to clear the color buffer before we draw any objects. If not,
the background window will be messy, usually showing our desktop.

• To clear the color buffer, we use this function:
– glColor(GL_COLOR_BUFFER_BIT)

© 2004, Tom Duff and George Ledin Jr 34

(3) Set background color

• If you want to set the background color, you need to use
glClearColor(…) and specify the color you want.

• glColor() grabs the last color defined by glClearColor to
set the background color.

– Therefore, you must use glClearColor() prior to using glColor().

– If you don’t use the glClearColor to set the background, glClear()
will set the background to its default value, which is black.

© 2004, Tom Duff and George Ledin Jr 35

Guess what’s the background color of this display() function…

void display(void)
{

glClearColor (1.0, 0.0, 0.0, 0.0); // Red
glClearColor (0.0, 0.0, 1.0, 0.0); // Blue
glClearColor (0.0, 1.0, 1.0, 0.0); // Cyan

/* clear frontground color buffer */
glClear(GL_COLOR_BUFFER_BIT);

/* draw a bigger yellow polygon */
glColor3f(1.0, 1.0, 0.0);
//glClearColor (1.0, 1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();

/* draw a smaller red polygon */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.25, -0.25);
glVertex2f (0.25, -0.25);
glVertex2f (0.25, 0.25);
glVertex2f (-0.25, 0.25);

glEnd();
glFlush();

}

© 2004, Tom Duff and George Ledin Jr 36

Answer: Output background color is Green
void display(void)
{

glClearColor (1.0, 0.0, 0.0, 0.0); // Red
glClearColor (0.0, 0.0, 1.0, 0.0); // Blue
glClearColor (0.0, 1.0, 1.0, 0.0); // Cyan

/* clear frontground color buffer */
glClear(GL_COLOR_BUFFER_BIT);

/* draw a bigger yellow polygon */
glColor3f(1.0, 1.0, 0.0);
//glClearColor (1.0, 1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();

/* draw a smaller red polygon */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.25, -0.25);
glVertex2f (0.25, -0.25);
glVertex2f (0.25, 0.25);
glVertex2f (-0.25, 0.25);

glEnd();
glFlush();

}

Because glColor() only grabs the last
color defined by glClearColor() to set the
background color, therefore, in this case
background is green.

© 2004, Tom Duff and George Ledin Jr 37

We can write our own set background function

Void SetBackground(GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha)

{
/* set the clear value for color buffer */
glClearColor (red, green, blue, alpha);

/* clear color buffer with clear value set by
glClearColor */
glClear(GL_COLOR_BUFFER_BIT);
}

© 2004, Tom Duff and George Ledin Jr 38

(4) Set object color

• OpenGL uses glColor*() to set drawing color.

© 2004, Tom Duff and George Ledin Jr 39

Example of how to use OpenGL RGB Colors
void display(void)
{

/* Set the buffer clear value to white for the background color */
glClearColor (1.0, 1.0, 1.0, 1.0); // white

/* clear frontground color buffer */
glClear(GL_COLOR_BUFFER_BIT);

/* draw a bigger yellow polygon */
glColor3f(1.0, 1.0, 0.0);
//glClearColor (1.0, 1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();

/* draw a smaller red polygon */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.25, -0.25);
glVertex2f (0.25, -0.25);
glVertex2f (0.25, 0.25);
glVertex2f (-0.25, 0.25);

glEnd();
glFlush();

}

© 2004, Tom Duff and George Ledin Jr 40

Guess what’s the output of this display() function…
void display(void)
{

glClearColor (1.0, 0.0, 0.0, 0.0);

/* draw a bigger yellow polygon */
glColor3f(1.0, 1.0, 0.0);

glBegin(GL_POLYGON);
glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();

/* draw a smaller red polygon */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.25, -0.25);
glVertex2f (0.25, -0.25);
glVertex2f (0.25, 0.25);
glVertex2f (-0.25, 0.25);

glEnd();
glFlush();

}

© 2004, Tom Duff and George Ledin Jr 41

The output is …
void display(void)
{

glClearColor (1.0, 0.0, 0.0, 0.0);

/* draw a bigger yellow polygon */
glColor3f(1.0, 1.0, 0.0);

glBegin(GL_POLYGON);
glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();

/* draw a smaller red polygon */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f (-0.25, -0.25);
glVertex2f (0.25, -0.25);
glVertex2f (0.25, 0.25);
glVertex2f (-0.25, 0.25);

glEnd();
glFlush();

}

© 2004, Tom Duff and George Ledin Jr 42

OpenGL Color Function Summary

void glClearColor(
GLclampred,
GLclampgreen,
GLclampblue,
GLclampalpha};

void glClear(GLbitfield mask);

void glColor3f(
GLbyte red,
GLbyte green,

GLbyte blue);

[0,1]

© 2004, Tom Duff and George Ledin Jr 43

Color Interpolation
void display(void)
{
/* clear all pixels */

glClear (GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

/* a color is defined for each Vertex*/
glBegin(GL_TRIANGLES);

glColor3d (1.0, 0.0, 0.0);
glVertex3f (0.0, 0.0, 0.0);

glColor3f (0.0, 1.0, 0.0);
glVertex3f (0.0, 1.0, 0.0);

glColor3f (0.0, 0.0, 1.0);
glVertex3f (1.0, 0.0, 0.0);

glEnd();

glFlush ();
}

• color_inter.c

	LecturesOpenGL Introduction
	What is OpenGL®
	What does OpenGL do and not do
	OpenGL Family
	How to use OpenGL
	OpenGL Graphics Pipeline
	Projection and Viewport
	Orthogonal Projection
	Viewport
	How to draw a simple square in OpenGL
	How to draw a simple square in OpenGL, Continued
	World Coordinates ? World Window ? Screen Window
	Example of glViewport
	Viewport Code Segment A
	Viewport Code Segment B
	Viewport Code Segment, Continued
	Overview of Some Basic OpenGL Functions
	OpenGL data types
	OpenGL Primitives
	Glu Objects
	Glut Objects
	OpenGL Color Attributes
	A note on color index mode
	Colors are part of OpenGL state
	OpenGL Color Usages
	(1) Setting Initial Display Mode for Colors
	(2) Clear Color Buffer
	(3) Set background color
	Guess what’s the background color of this display() function…
	Answer: Output background color is Green
	We can write our own set background function
	(4) Set object color
	Example of how to use OpenGL RGB Colors
	Guess what’s the output of this display() function…
	The output is …
	OpenGL Color Function Summary
	Color Interpolation

