
© 2004, Tom Duff and George Ledin Jr 1

Lectures
glScale Case Studies

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

Case Study 1
Case Study Setup:

Assume in the world
coordinates we have one color
cube of size two, whose front is
red.
colorcube4 ():

The front left right vertex
is at (0,0,0)

Goal:
We will observe how to scale
an object using glScale{f,d}.

Diagonal ViewTop ViewSide ViewFront View

Files Used: scaling.c, DrawCubes.c, DrawCubes.h, MyMatrix.c, MyMatrix.h

© 2004, Tom Duff and George Ledin Jr 3

First, Set up the Projection View
• This set up means two things:

– If the object is outside its
bounding box, it cannot be
viewed. If part of an object is
outside, that part cannot be
viewed.

– The camera is always in the
geometric center of its bounding
box. The camera cannot see
anything outside its box.

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-4.0,4.0,-4.0,

4.0,-4.0,4.0);

© 2004, Tom Duff and George Ledin Jr 4

Second, Set up the Camera’s View and the
glScale in the World Coordinates

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

gluLookAt(…);
glScale{f,d}(…);

// Draw cube afterwards

• Under the model view, we can decide how camera
views the objects, which angle, how far away. Also,
we can decide the size and shape of the objects.

• What will be scaled, Camera’s view volume or
Objects’ size?

This depends on the order of specification of
gluLookAt and glScale{f,d}.

– If we specify gluLookAt before glScale{f,d}, the objects
drawn after glScale{f,d} will be scaled.

– If we specify gluLookAt after glScale{f,d}, we will be
scaling the Camera view volume instead of the objects.

• If you don’t specify gluLookAt, the camera will take
its default position and aim, which is camera located
at (0,0,0), looking at (0,0,-1). Then the Scaling
applies only to the objects.

© 2004, Tom Duff and George Ledin Jr 5

How glScale{f,d} works?
void glScale{d,f}

(GLdouble x,
GLdouble y,
GLdouble z)

• glScale{f,d} produces a
general scaling along x, y, z
axis.

– x, y, z
Specify the scaling
factor along x, y, z
axes.

• Under glScale{d,f}(x,y,z), we can also
scale camera’s view volume.

– For example, if gluLookAt is defined after
glScale, camera’s view volume will be
scaled and its scaling factor will be (1/x,
1/y, 1/z) in x, y, and z direction.

If gluLookAt is defined before glScale,
object will be scaled, and its

scaling factor will be (x,y,z) in x, y,
and z direction.

• Just like rotation, scaling also has a
fixed point. This fixed point is located at
the origin and is unchanged by the
scaling.

– If you need the fixed point to be other
than origin, you need to use translation.

© 2004, Tom Duff and George Ledin Jr 6

Question
1. What is being Scaled? Camera’s view volume or Object’s size?

• If the Camera’s view volume is scaled, then what is the scaling factor
in x, y, z direction? Where is the fixed point?

• If the Object’s size is scaled, then what is the scaling factor in x, y, z
direction? Where is the fixed point?

• Code A:
glLoadIdentity();
glScalef(0.5,1.5,1);
colorcube4();

Front View Diagonal ViewSide View Top View

Before
Scaling:

Front View Side View Top View Diagonal View

After
Scaling:

Note: The diagonal view above uses: gluLookAt(1,1,1, 0,0,0, 0,1,0);

© 2004, Tom Duff and George Ledin Jr 7

Answers Front View Side View Top View Diagonal View

Before
Scaling:• Code A:

glLoadIdentity();
glScalef(0.5,1.5,1);
colorcube4();

After
Scaling:

Front View Side View Top View Diagonal View

Scale down X by ½
Scale up Y by 1.5Original Position

1. The object is being Scaled:
• Since gluLookAt is not set, camera takes

its default position, (0,0,0), aiming at (0,0,-
1)

• Since after glScale and before the
drawing of objects, there is no gluLookAt
specification, therefore prior to glScale’s
execution, there is no camera
specification. Therefore, glScale will scale
the objects.

4. The scaling factor in X,Y,Z direction:
• The object is scaled ½ in x direction, 1.5

in y direction, and there is no scaling in z
direction since the scaling factor is 1.

Scale down X by ½
Keep Z the same scaleOriginal Position

© 2004, Tom Duff and George Ledin Jr 8

Case Study 2
What is being translated? Camera or Object?

1. If the Camera’s view volume is scaled, then what is the scaling factor in x, y, z
direction? Where is the fixed point?

2. If the Object’s size is scaled, then what is the scaling factor in x, y, z direction?

Where is the fixed point?

• Code B:
glLoadIdentity();
glScalef(0.5,1.5,1,0);
glLookAt(0,0,0,

0,0,-1,
0,1,0);

colorcube4();

Front View Side View Top View Diagonal View

Before
Scaling:

Front View Side View Top View Diagonal View

After
Scaling:

Files Used: glTranslate.c, DrawCubes.c, DrawCubes.h, MyMatrix.c, MyMatrix.h

© 2004, Tom Duff and George Ledin Jr 9

Answers Front View Side View Top View Diagonal View

• Code A:
glLoadIdentity();
glScalef(0.5,1.5,1);
colorcube4();

Before
Scaling:

Front View Side View Top View Diagonal View

Scale up X by 2, Scale down Y by 1.5
Fit the camera view to 1x1 view portOriginal Position After

Scaling:

1. The Camera is being Scaled:
• Since gluLookAt is not set, camera

takes its default position, (0,0,0),
aiming at (0,0,-1)

• Since after glScale and before the
drawing of objects, there is no
gluLookAt specification, therefore
prior to glScale’s execution, there
is no camera specification.
Therefore, glScale will scale the
objects.

2. The scaling factor in X,Y,Z direction:
• The object is scaled ½ in x

direction, 1.5 in y direction, and
there is no scaling in z direction
since the scaling factor is 1.

Scale up X by 2, Keep Z the same scale
Fit the camera view into the 1x1 viewportOriginal Position

© 2004, Tom Duff and George Ledin Jr 10

Case Study 3
Why the scaling cause the object to move in the Screen?

Front View Top ViewSide View Diagonal ViewCase Study Setup:

Assume in the world coordinates
we have one color cube of size two,
whose front is yellow..

colorcube3 ():
centered at (3,0,-1)

Front View

Before
Scaling:

Object
Moved

Side View Top View Diagonal View

Code:
glLoadIdentity();
glScalef(0.5,1.5,1);
colorcube3();

After
Scaling:

© 2004, Tom Duff and George Ledin Jr 11

Case Study 3
Answer: The fit point is at the origin (0,0,0).

The scaling is with respect to the origin.
Front View Top ViewSide View Diagonal View

Code:
glLoadIdentity();
glScalef(0.5,1.5,1);

Front View

After
Scaling:

Fixed Point:
(2,-1,0)

Before
Scaling:

Side View Top View Diagonal View

Scaling Effect Observed:

Before Scaling:
Front lower left: (-2,-1,0)
Front lower right: (4,-1,0)

After Scaling:
Front lower left: (-2,-1,0) X (0.5,1.5,1) = (-1,-1.5,0)
Front lower right: (4,-1,0) X (0.5,1.5,1) = (2,-1.5,0)

© 2004, Tom Duff and George Ledin Jr 12

Case Study 4
How to scale with any fixed point?

Case Study Setup:

Assume in the world coordinates
we have one color cube of size
two,
whose front is yellow..

colorcube3 (): centered at (3,0,-1)

Goal:
• Scale the cube.
• Scaling factors: (0.5,1.5,1)
• Fix point desired:

Front lower left (2,-1,0)

Front View Side View Top View Diagonal View

Before
Scaling:

Front View

After
Scaling:

Fixed Point:
(2,-1,0) Side View Top View Diagonal View

© 2004, Tom Duff and George Ledin Jr 13

Case Study 4
Answer: Translate the fix point of scaling you want to the origin, scale the object, then translate the
fix point back. The Actual implementation is in the reverse order of logical order.

Code:
glLoadIdentity();
// fix point desired is (2,-1,0)
glTranslatef(2,-1,0);
glScalef(0.5,1.5,1);
glTranslatef(-2,1,0);
colorcube3();

Top ViewSide View Diagonal ViewFront View

Front View

Before
Scaling:

Fixed Point:
(2,-1,0) Top ViewSide View Diagonal ViewScaling Effect Observed:

Before Scaling:
Front lower left: (2,-1,0)
Front lower right: (4,-1,0)

After Scaling:
Front lower left: (2,-1,0)
Front lower right: (3,1,0)

After
Scaling:

© 2004, Tom Duff and George Ledin Jr 14

Case Study 4, continued
Generic Code and Matrices for Scaling with respect to any fix point

Summery:

Assume the following Scaling Constrains:
Fix Point (Fx, Fy, Fz)
Scaling Factor: (Sx, Sy, Sz)

Code for scaling:
glLoadIdentity();
glTranslatef(Fx,Fy,Fz); // T1(Fx,Fy,Fz)
glScalef(Sx,Sy,Sz); // S(Sx,Sy,Sz)
glTranslatef(-Fx,-Fy,-Fz); // T2(-Fx,-Fy,-Fz)
// draw objects afterwards

Matrix Representations:
T1(Fx,Fy,Fz) = 1 0 0 Fx

0 1 0 Fy
0 0 1 Fz
0 0 0 1

S(Sx,Sy,Sz)= Sx0 0 0
0 Sy0 0
0 0 Sz0
0 0 0 1

T2(-Fx,-Fy,-Fz)= 1 0 0 -Fx
0 1 0 -Fy
0 0 1 -Fz
0 0 0 1

T1(Fx,Fy,Fz)* S(Sx,Sy,Sz)*T2(-Fx,-Fy,-Fz) =
Sx 0 0 (1-Sz)Fx
0 Sy 0 (1-Sy)Fy
0 0 Sz (1-Sz)Fz
0 0 0 1

(Note: Matrix Multiplication is associative.
Therefore both premutiplication (T1*S)*T2 and
post multiplication T1*(S * T2) produce the
same results.

© 2004, Tom Duff and George Ledin Jr 15

Case Study 4, continued
Generic Code and Matrices for Scaling with respect to any fix point

Example
Code for Sclaing using Matrix only:
float *MyScalingWithFixPoint(float Sx, float Sy, float Sz,

float Fx, float Fy, float Fz)
{
float *m0;
float *m1;

m0 = malloc(16 * sizeof(float));
m1 = malloc(16 * sizeof(float));

m0[0] = Sx; m0[4] = 0; m0[8] = 0; m0[12]=(1-Sz)*Fx;
m0[1] = 0; m0[5] = Sy; m0[9] = 0; m0[13]=(1-Sy)*Fy;
m0[2] = 0; m0[6] = 0; m0[10]= Sz; m0[14]=(1-Sz)*Fz;
m0[3] = 0; m0[7] = 0; m0[11] =0; m0[15]=1;

glMultMatrixf(m0);
glGetFloatv(GL_MODELVIEW_MATRIX,m1);

return m1;
}

Code for scaling using Translation:
glLoadIdentity();
// fix point desired is (2,-1,0)
glTranslatef(2,-1,0); // T(Fx,Fy,Fz)
glScalef(0.5,1.5,1); // S(Sx,Sy,Sz)
glTranslatef(-2,1,0); // T(-Fx,-Fy,-Fz)
// draw objects afterwards

Both two codes produce the same results

Side View Top ViewFront View Diagonal View

Before
Scaling:

Front View

After
Scaling:

Fixed Point:
(2,-1,0)

Matrix Used for Scaling:
T(Fx,Fy,Fz)* S(Sx,Sy,Sz)*T(-Fx,-Fy,-Fz) =

Sx 0 0 (1-Sz)Fx
0 Sy 0 (1-Sy)Fy
0 0 Sz (1-Sz)Fz
0 0 0 1

Top View Diagonal ViewSide View

© 2004, Tom Duff and George Ledin Jr 16

Case Study 4
What happen to points on the objects during scaling with respect to a fix point?

Summery:
Assume the following Scaling Constrains:
Fix Point (Fx, Fy, Fz)
Scaling Factor: (Sx, Sy, Sz)

Before Scaling:
A point in the object (X,Y,Z)

After Scaling:
Fixed point (Fx,Fy,Fz) will not change.
A point in the object (X,Y,Z) that is not a fixed point:

will become (X’, Y’, Z’)
(X’,Y’,Z’)
= (X,Y,Z) X (Sx,Sy,Sz) + (Fx,Fy,Fz) X (Sx,Sy,Sz)

Front View Top ViewSide View Diagonal View

Example:
Before Scaling:

Front lower left: (2,-1,0)
Front lower right: (4,-1,0)

After Scaling:
Front lower left: (2,-1,0)
Front lower right: (3,1,0)

Note:
(2,-1,0) is the fixed point, therefore it will not be scaled.

(4,-1,0) X (0.5,1.5,1) + (2,-1,0) X (0.5,1.5,1)
= (3,-1,0)

Before
Scaling:

Front View Side View

Fixed Point:
(2,-1,0) Top View Diagonal View

After
Scaling:

Code:
glLoadIdentity();
// fix point desired is (2,-1,0)
glTranslatef(2,-1,0);
glScalef(0.5,1.5,1);
glTranslatef(-2,1,0);
colorcube3(); // cube of size 2,

// centered at (-3,0,-1)

© 2004, Tom Duff and George Ledin Jr 17

Case Study 5
What’s the accumulative effect of several glScale?

General Formula
glScale{f,d} (x1,y1,z1);
glScale{f,d} (x2,y2,z2);

glScale{f,d} (x2*x1,y2*y1,z2*z1);

Example
Code C:

glLoadIdentity();
glScalef(0.25,3,2);
glScalef(2,0.5,0.5);
colorcube0();

Code D:
glLoadIdentity();
glScale(0.5,1.5,1);
colorcube0();

This above two pieces of code produces the same result:

Diagonal ViewFront View Side View Top View

Before
Scaling:

Front View Side View Top View Diagonal View

After
Scaling:

© 2004, Tom Duff and George Ledin Jr 18

The Actual Matrix Glut used in its Implementation
The following code will allow you to see what matrix Glut uses in its implementation:

// Print out the current matrix state after
// each execution of glut functions.
float CT[16];
glLoadIdentity();

glScalef(0.5,1.5,0.25);
glGetFloatv(GL_MODELVIEW_MATRIX,CT);
PrintMToFile(CT,

"After glScalef(0.5,1.5,0.25);");

colorcube4();

// Print Matrix in Row Major Style
void PrintM(float m[], char *s) {
int i = 0; int j = 0; int t = 0;

printf("Current Matrix: %s\n",s);

for (j = 0; j < 4; j++) {
i = j;
for (t = 0; t < 4; t++) {

printf("%2f\t", m[i]);
i=i+4;
}

printf("\n");
}
printf("End of printing Current Matrix \n\n");
}

Front View Diagonal ViewSide View Top ViewThe Output of printed Current Matrices

Current Matrix, After glScalef(0.5,1.5,1);
0.25 0.00 0.00 0.00
0.00 3.00 0.00 0.00
0.00 0.00 2.00 0.00
0.00 0.00 0.00 1.00

Current Matrix, After glScalef(2,0.5,0.5);
0.50 0.00 0.00 0.00
0.00 1.50 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00

Before
Scaling:

Front View Side View Top View Diagonal View

After
Scaling:

© 2004, Tom Duff and George Ledin Jr 19

Case Study 5, continued
Generic Matrix for translation

Recall glLoadIdentity() is defined as follows:
1,0,0,0
0,1,0,0
0,0,1,0
0,0,0,1

Scaling Matrix for
glScale{f,d}(x,y,z)is as follows:

Sx,0, 0, 0
0, Sy,0, 0
0, 0, Sz,0
0, 0, 0, 1

Therefore, we can write our own Matrix to do the same work that glut Function does.

glLoadIdentity();
glScalef(0.25,3,2);
glScalef(2,0.5,0.5);
colorcube4(); // Draw a cube centered at (0,0,0)

© 2004, Tom Duff and George Ledin Jr 20

Case Study 5, continued

Using Glut Functions:

glLoadIdentity();
glScalef(0.25,3,2);
glScalef(2,0.5,0.5);

colorcube4();

Using Matrix Multiplication:
float *m0,m1,*m2,*m3;
...
glLoadMatrixf(m0);
glMultMatrixf(m1);
glMultMatrixf(m2);

m2:
2, 0, 0, -4
0, 0.5, 0, 3
0, 0, 0.5, -2
0, 0, 0, 1

m1:
0.25, 0, 0, 2
0, 3, 0, -1
0, 0, 2, 1
0, 0, 0, 1

m0:
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1

We shall achieve the same output by using glut functions
or constructing our own load matrix and multiply matrix
Functions.

Note: The m0,m1,m3 were displayed in row major.
However, in the actual implementation, we need
to construct our matrix array in column major.

© 2004, Tom Duff and George Ledin Jr 21

Case Study 6
Scaling of Three Cubes

- glScale.c, DrawCubes.c, DrawCubes.h

Case Study Setup:
Assume in the world coordinates we
have three cubes of size two. One
cube’s front is red, the second one’s
front is green, the third one’s front is
yellow.

Cube (1): centered at (-3,0,-1)
Cube (2): centered at (3,0,-1)
Cube (3): centered at (0,0,-3)

Goal:
We will test the effect of glScale
on the view of three colored cubes.

Side ViewTop ViewFront View

© 2004, Tom Duff and George Ledin Jr 22

Case Study 6, continued
- Scaling of 3 cubes

Code:
glLoadIdentity();
// camera default: located at (0,0,0)
// looking at (0,0,-1)
glScalef(-0.5,1.5,0.25); // Scaling three objects

colorcube1();
colorcube2();
colorcube3();

Before Scaling

Front View Top View Side View

Observation:

1. The fixed point is (0,0,0), and is unaffected by
the scaling.

2. On the X direction: Objects are scaled down
by half, and reflected, because of scaling
factor “-0.5”.

3. On the Y direction: Objects are scaled up by
1.5.

4. On the Z direction: Objects are scaled down
by 0.25.

After Scaling
Front View Top View Side View

	LecturesglScale Case Studies
	Case Study 1
	First, Set up the Projection View
	Second, Set up the Camera’s View and the glScale in the World Coordinates
	How glScale{f,d} works?
	Answers
	Answers
	Case Study 3Why the scaling cause the object to move in the Screen?
	Case Study 3Answer: The fit point is at the origin (0,0,0). The scaling is with respect to the origin.
	Case Study 4How to scale with any fixed point?
	Case Study 4Answer: Translate the fix point of scaling you want to the origin, scale the object, then translate the fix
	Case Study 4, continuedGeneric Code and Matrices for Scaling with respect to any fix point
	Case Study 4, continuedGeneric Code and Matrices for Scaling with respect to any fix point Example
	Case Study 4What happen to points on the objects during scaling with respect to a fix point?
	Case Study 5What’s the accumulative effect of several glScale?
	Case Study 6Scaling of Three Cubes- glScale.c, DrawCubes.c, DrawCubes.h

