
© 2004, Tom Duff and George Ledin Jr 1

Lectures
Display List

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

What is Display List?
• What is it?

– A group of OpenGL commands that have been stored for later
execution.

– Because a display list is a cache of commands, once it is created, it
cannot be modified.

– There is no facility to save the contents of a display list into a data file,
and no facility to create a display list from a file. In this sense, a display
list is designed for temporary use.

– OpenGL allows you to create a display list that calls another list that
hasn't been created yet. Nothing happens when the first list calls the
second, undefined one.

© 2004, Tom Duff and George Ledin Jr 3

Without display list, the standard rendering
mode is immediate mode

• The standard rendering mode in OpenGL is known as immediate
mode. Primitives are passed through the OpenGL pipeline as soon
as they are defined in the program. They are then no longer in the
system; only their image is on the screen. When something changes
and the screen needs to be redrawn, we have to regenerate the
primitives.

• This redisplay process can be very time-consuming. It can be
especially slow when the application program (the client) is on one
side of a network and the render and display process (the graphics
server) is on the other.

© 2004, Tom Duff and George Ledin Jr 4

Retained mode
• In retained mode graphics, collections of

primitives and other information can be
stored as objects on the server, thus avoid
costly transfers and regeneration
problems.

© 2004, Tom Duff and George Ledin Jr 5

The advantage of display list
• The display list store their contents in an internal format

that makes for fast display.

• The display list uses retained mode graphics, and
improve the performance of OpenGL by storing data at
the server side.

© 2004, Tom Duff and George Ledin Jr 6

When to use display list?
• If you plan to redraw something

multiple times.

• If you have a set of state changes to
be applied multiple times.

© 2004, Tom Duff and George Ledin Jr 7

Case Study 1
Drawing a square and viewing it from different angles.

• How to draw a square and view it
from different angles?

– Store the square in a display
list.

– Whenever you change the
model view matrix, execute
the stored display list.

© 2004, Tom Duff and George Ledin Jr 8

(1) Define a viewing perspective
glViewport(0, 0,

(GLsizei) w, (GLsizei) h);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(30,

(GLfloat)
w/(GLfloat) h,
1.0,
100.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);

© 2004, Tom Duff and George Ledin Jr 9

(2) Define a square
// Define a square of two colors
static void squre(int numc, int numt)
{

glBegin(GL_POLYGON);
glColor3f(1,0,0);
glVertex3f(-1, -1, 0);

glColor3f(1,1,0);
glVertex3f(-1,1,0);

glVertex3f(1,1,0);
glVertex3f(1,-1,0);

glEnd();
}

© 2004, Tom Duff and George Ledin Jr 10

(3) Create a Display List
/* Create display list with Square and

initialize state*/
GLuint theSquare;

static void init(void)
{

theSquare = glGenLists (1);
glNewList(theSquare, GL_COMPILE);
square();
glEndList();
…

}

• GLuint glGenLists(range)

– Specifies the number of continuous
empty display lists to be generated

– Returns display list name

• Why do we need to use
glGenLists to generate a display
list index?

– Because we don’t want to choose
an index that is already created,
and overwrite an existing display
list.

– Zero is returned if the requested
number of indices isn't available, or
if range is zero.

© 2004, Tom Duff and George Ledin Jr 11

(3) Create Display List, continued…
/* Create display list with Square

and initialize state*/
GLuint theSquare;

static void init(void)
{

theSquare = glGenLists (1);
glNewList(theSquare,
GL_COMPILE);
squre();
glEndList();
…

}

• void glNewList(listName, mode)

– list: display list name

– Mode:
• GL_COMPILE: compile

command
• GL_COMPILE_EXECUTE:

commands are executed as
they are compiled into display
list

• void glEndList()

– All subsequent commands are
placed in the display list, in the
order issued, until glEndList is
called.

© 2004, Tom Duff and George Ledin Jr 12

(4) Define Display CallBack function
void display(void)
{

SetBackground(1,1,1,0); // white
glCallList(theSquare);
glFlush();

}

int main(int argc, char **argv)
{

…
glutDisplayFunc(display);
…

}

• void glCallList (GLuint list);

– list: The integer name of the
display list to be executed

– glCallList causes the named
display list to be executed.

© 2004, Tom Duff and George Ledin Jr 13

(4) Define when to invoke the display
– keyboard input in this case

void keyboard(unsigned char key, int x, int
y)

{
switch (key) {
case 'x': case 'X':

glRotatef(30,1,0,0.0);
glutPostRedisplay();
break;

case 'y': case 'Y':
glRotatef(30,0,1,0);
glutPostRedisplay();
break;

case 'z': case 'Z':
glRotatef(30,0,0,1);
glutPostRedisplay();
break;

case 'i': case 'I':
glLoadIdentity();
gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
glutPostRedisplay();
break;

case 27:
exit(0);
break;

}
}

• void glutPostRedisplay ();

– glutPostRedisplay marks the normal plane of
current window as needing to be redisplayed.

– After either call, the next iteration through
glutMainLoop, the window's display callback
will be called to redisplay the window's normal
plane.

• What does the code do?

– If user hits “x” or “X” key, the square will be
rotated around the X axis.

– If user hits “y” or “Y” key, the square will be
rotated around the Y axis.

– If user hits “z” or “Z” key, the square will be
rotated around the Z axis.

– If user hits “i” or “I” key, the square will be set
to its original state.

http://pyopengl.sourceforge.net/documentation/manual/glutMainLoop.3GLUT.html

© 2004, Tom Duff and George Ledin Jr 14

Output when user clicks “X”
Note: the square rotates around the X axis

© 2004, Tom Duff and George Ledin Jr 15

Case Study 2
Use display list to draw many triangles

• How to draw a triangle multiple
times?

– Create a display list contains
OpenGL commands to draw a
triangle. (init())

– In the display call back routine
(display()), executes the
display list as many times as
is needed.

© 2004, Tom Duff and George Ledin Jr 16

(1) Define a red triangle
• Observations:

– The triangle is drawn in red
with flat shading.

– glTranslatef() routine in the
display list alters the position
of the next object to be drawn

GLuint listName;
static void init (void)

{
listName = glGenLists (1);
glNewList (listName, GL_COMPILE);

glColor3f (1.0, 0.0, 0.0); //red

glShadeModel (GL_FLAT);
/* current color red */
glBegin (GL_TRIANGLES);

glVertex2f (0.0, 0.0);
glVertex2f (1.0, 0.0);
glVertex2f (0.0, 1.0);

glEnd ();

glTranslatef (1.5, 0.0, 0.0); /* move
position */
glEndList ();
}

© 2004, Tom Duff and George Ledin Jr 17

(2) Call Display List in display call back

void display(void)
{ GLuint i;
glClear(GL_COLOR_BUFFER_BIT);
glColor3f (0.0, 1.0, 0.0); /* current color green */
for (i = 0; i < 10; i++) /* draw 10 triangles */

glCallList (listName);

glFlush ();
}

© 2004, Tom Duff and George Ledin Jr 18

Case Study 3
Executing Multiple Display Lists to create stroked fonts

• Display Lists are very useful to
create fonts.

• Goal of study case:
– In this case study, we will create a

display list of characters “A”, “E”,
“P”, “R”, “S”, and “ “ (blank space).

– Use this display list to write a
sentence “A SPARE APPEARS
AS APES PREPARE RARE
REPPERS”.

© 2004, Tom Duff and George Ledin Jr 19

Create stroked fonts
(1) create fonts – example of creating “A”

#define PT 1 // point
#define STROKE 2
#define END 3

typedef struct charpoint
{ GLfloat x, y;
int type; } CP;
CP Adata[] = {

{ 0, 0, PT}, {0, 9, PT}, {1, 10,
PT},
{4, 10, PT}, {5, 9, PT}, {5, 0,
STROKE},
{0, 5, PT}, {5, 5, END}

};

/* drawLetter() interprets the instructions
from the array

* for that letter and renders the letter with
line segments.

*/
static void drawLetter(CP *l)
{

glBegin(GL_LINE_STRIP);
while (1) {

switch (l->type) {
case PT:

glVertex2fv(&l->x);
break;

case STROKE:
glVertex2fv(&l->x);
glEnd();
glBegin(GL_LINE_STRIP);
break;

case END:
glVertex2fv(&l->x);
glEnd();
glTranslatef(8.0, 0.0, 0.0);
return;

}
l++;

}
}

• How to create font ‘A’:

© 2004, Tom Duff and George Ledin Jr 20

Create stroked fonts
(2)create display lists for fonts

/* Create a display list for each of 6
characters */

void initStrokedFont(void){
GLuint base;
base = glGenLists(128);
glListBase(base);
glNewList(base+'A', GL_COMPILE);

drawLetter(Adata);
glEndList();
glNewList(base+'E', GL_COMPILE);

drawLetter(Edata);
glEndList();
glNewList(base+'P', GL_COMPILE);

drawLetter(Pdata);
glEndList();
glNewList(base+'R', GL_COMPILE);

drawLetter(Rdata);
glEndList();
glNewList(base+'S', GL_COMPILE);

drawLetter(Sdata);
glEndList();
glNewList(base+' ', GL_COMPILE); /*
space character */

glTranslatef(8.0, 0.0, 0.0);
glEndList();
}

• The glGenLists() command allocates
128 contiguous display-list indices.

• The first of the contiguous indices
becomes the display-list base.

– You can specify this initial index
by using glListBase() before
calling glCallLists().

• Each display-list index is the sum of
the base and the ASCII value of that
letter.

• In this example, only “A”, “E”, “R”, “S”
and “ “ (space) characters are created.

© 2004, Tom Duff and George Ledin Jr 21

Create stroked fonts
- (3) Call glCallLists() to execute display lists.

/* Each ascii code is the offsets to the display lists. */

void printStrokedString(GLbyte *s)
{
GLint len = strlen(s);
glCallLists(len, GL_BYTE, s);
}

• void glCallLists(GLsizei n, GLenum type, const
GLvoid *lists)

• PARAMETERS

– n: Specifies the number of display lists to be
executed.

– type: Specifies the type of values in lists.
Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, and etc are
accepted.

– lists: Specifies the address of an array of
name offsets in the display list. The pointer
type is void because the offsets can be bytes,
shorts, ints, or floats, depending on the value
of type.

char *test1 = “RARE PEARS ARE SPARSE";

void display(void)
{
…
printStrokedString(test1);
..
}

© 2004, Tom Duff and George Ledin Jr 22

How can there be several fonts?
• To have several such fonts, you would need to

establish a different initial display-list index for
each font.

Example of two different fonts of “A”

© 2004, Tom Duff and George Ledin Jr 23

Case Study 4
Using a display list for drawing different styles of lines

• Goal:

– Create three lines.
– Each line is drawn in a

different style.

© 2004, Tom Duff and George Ledin Jr 24

Case Study 4
(1) Creating display list for three different line styles

/* define display list for lines*/
GLuint offset;
offset = glGenLists(3);

glNewList (offset, GL_COMPILE);
glDisable (GL_LINE_STIPPLE);

glEndList ();

glNewList (offset+1, GL_COMPILE);
glEnable (GL_LINE_STIPPLE);
glLineStipple (1, 0x0F0F);

glEndList ();

glNewList (offset+2, GL_COMPILE);
glEnable (GL_LINE_STIPPLE);
glLineStipple (1, 0x1111);

glEndList ();

© 2004, Tom Duff and George Ledin Jr 25

Case Study 4
(2) Calling a display list to draw three lines of different styles

/* use display list to draw different lines */

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES);
glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

void display(void){
GLuint i;

glClear (GL_COLOR_BUFFER_BIT);
glColor3f (0.0, 0.0, 0.0); /* black */

glCallList (offset);
drawOneLine(0,0.1,15,0.1);
glCallList (offset+1);
drawOneLine(0,0.4,15,0.4);
glCallList (offset+2);
drawOneLine(0,0.7,15,0.7);
glFlush ();

}

© 2004, Tom Duff and George Ledin Jr 26

Managing Display List Indices
• So far, we've recommended the use of glGenLists() to

obtain unused display-list indices.

• If you insist upon avoiding glGenLists(), then be sure to
use glIsList() to determine whether a specific index is in
use.

– GLboolean glIsList(GLuint list);
• Returns GL_TRUE if list is already used for a display list and

GL_FALSE otherwise.

© 2004, Tom Duff and George Ledin Jr 27

How to delete a display list?
• You can explicitly delete a specific display list or a

contiguous range of lists with glDeleteLists(). Using
glDeleteLists() makes those indices available again.

– void glDeleteLists(GLuint list, GLsizei range);

• Deletes a range of display lists, starting at the
index specified by list.

• An attempt to delete a list that has never been
created is ignored.

© 2004, Tom Duff and George Ledin Jr 28

Case Study 5
What is the color of vertex? – Black or Red?
GLfloat color_vector[3]

= {0.0, 0.0, 0.0}; // black

glNewList(1, GL_COMPILE);
glColor3fv(color_vector);

glEndList();

color_vector[0] = 1.0; // red

• Answer : Black

• Reason:

– The subsequent change of the
value of the color_vector array to
red (1.0, 0.0, 0.0) has no effect
on the display list.

– Because the display list contains
the values that were in effect
when it was created.

© 2004, Tom Duff and George Ledin Jr 29

Hierarchical Display Lists
• You can create a hierarchical display list, which is a

dissplay list that executes another display list by calling
glCallList() between a glNewList and glEndList().

• OpenGL allows you to create a display list that calls
another list that hasn't been created yet.
– Nothing happens when the first list calls the second undefined

one.

© 2004, Tom Duff and George Ledin Jr 30

Case Study 6
Using a Display List for easily changing geometric

parameters
• Goal:

– Use a hierarchical display
list to create a three vertex
polygon (a triangle in this
case)

© 2004, Tom Duff and George Ledin Jr 31

Case Study 6
(1) Create a polygon display list using a hierarchical display list

/* create display lists for the 3
vertices */

glNewList(1,GL_COMPILE);
glVertex3f(-2,-2);

glEndList();

glNewList(2,GL_COMPILE);
glVertex3f(2,-2);

glEndList();

glNewList(3,GL_COMPILE);
glVertex3f(0,2);

glEndList();

/* create a display list of polygon using
previous vertex display lists*/

glNewList(4,GL_COMPILE);
glBegin(GL_POLYGON);

glCallList(1);
glCallList(2);
glCallList(3);
glEnd();

glEndList();

• Note:
-To put a polygon in a display list
while allowing yourself to be able to
easily edit its vertices.

-To render the polygon, call display
list number 4.

(2,-2)

(0,2)

(-2,2)

(0,0)

© 2004, Tom Duff and George Ledin Jr 32

Case Study 6
(2) Call display list to create the polygon

void display(void)
{

GLuint i;

glClear (GL_COLOR_BUFFER_BIT);

/* black color for the triangle*/
glColor3f (0.0, 0.0, 0.0);

/* call polygon display list */
glCallList(4);

glFlush ();
}

(2,-2)

(0,2)

(-2,2)

(0,0)

© 2004, Tom Duff and George Ledin Jr 33

Advantage of using hierachical display
lists to create geometric objects

• To edit a vertex, you need only recreate the single
display list corresponding to that vertex.

• Since an index number uniquely identifies a display list,
creating one with the same index as an existing one
automatically deletes the old one.

© 2004, Tom Duff and George Ledin Jr 34

Do hierarchical display lists improve
memory usage or performance?

• Not necessarily.

• Keep in mind that this technique doesn't necessarily
provide optimal memory usage or peak performance, but
it's acceptable and useful in some cases.

• However, hierarchical display list is useful for an object
made of different components, especially when some of
those components are used multiple times.

© 2004, Tom Duff and George Ledin Jr 35

Limitations on the nesting level of
display lists.

• To avoid infinite recursion, there's a limit on the nesting level of
display lists.

• The limit is at least 64, but it might be higher, depending on the
implementation .

• To determine the nesting limit for your implementation of OpenGL,
call
– glGetIntegerv(GL_MAX_LIST_NESTING, GLint *data);

© 2004, Tom Duff and George Ledin Jr 36

Display list disadvantages

• The immutability of the contents of a display list.

• The execution of display lists isn't slower than
executing the commands contained within them
individually.

– Very small lists may not perform well since there is some
overhead when executing a list.

© 2004, Tom Duff and George Ledin Jr 37

Display List cannot store all
OpenGL commands

• The following commands can not be stored
in DisplayList:

glColorPointer()
glFlush()
glNormalPointer()
glDeleteLists()
glGenLists()
glPixelStore()
glDisableClientState()
glGet*()
glReadPixels()
glEdgeFlagPointer()
glIndexPointer()
glRenderMode()
glEnableClientState()
glInterleavedArrays()
glSelectBuffer()
glFeedbackBuffer()
glIsEnabled()
glTexCoordPointer()
glFinish()
glIsList()
glVertexPointer()

• Why?

– When using OpenGL across
a network, the client on one
machine, the server on
another.

– The display list resides on
the server. The server can’t
rely on the client for any
information.

– Querying commands such
as glGet*() and glIs*() will
return data which server will
not know where to store
them.

© 2004, Tom Duff and George Ledin Jr 38

Display List cannot store all
OpenGL commands, continued …

• The following commands can not be stored
in DisplayList:

glColorPointer()
glFlush()
glNormalPointer()
glDeleteLists()
glGenLists()
glPixelStore()
glDisableClientState()
glGet*()
glReadPixels()
glEdgeFlagPointer()
glIndexPointer()
glRenderMode()
glEnableClientState()
glInterleavedArrays()
glSelectBuffer()
glFeedbackBuffer()
glIsEnabled()
glTexCoordPointer()
glFinish()
glIsList()
glVertexPointer()

• Why?

– Commands that change
client’s state, such as
glPixelStore(),
glSelectBuffer() can’t be
stored in display list.

© 2004, Tom Duff and George Ledin Jr 39

Display List cannot store all
OpenGL commands, continued …

• The following commands can not be stored
in DisplayList:

glColorPointer()
glFlush()
glNormalPointer()
glDeleteLists()
glGenLists()
glPixelStore()
glDisableClientState()
glGet*()
glReadPixels()
glEdgeFlagPointer()
glIndexPointer()
glRenderMode()
glEnableClientState()
glInterleavedArrays()
glSelectBuffer()
glFeedbackBuffer()
glIsEnabled()
glTexCoordPointer()
glFinish()
glIsList()
glVertexPointer()

• Why?

– Commands that depend on
client state, such as
glVertexPointer(),
glColorPointer(), and
glInterleavedArrays() can
not be stored in display list.

© 2004, Tom Duff and George Ledin Jr 40

Display List cannot store all
OpenGL commands

• The following commands can not be stored
in DisplayList:

glColorPointer()
glFlush()
glNormalPointer()
glDeleteLists()
glGenLists()
glPixelStore()
glDisableClientState()
glGet*()
glReadPixels()
glEdgeFlagPointer()
glIndexPointer()
glRenderMode()
glEnableClientState()
glInterleavedArrays()
glSelectBuffer()
glFeedbackBuffer()
glIsEnabled()
glTexCoordPointer()
glFinish()
glIsList()
glVertexPointer()

• Why?

– Routines that rely upon
client state — such as
glFlush() and glFinish()—
can't be stored in a display
list because they depend
upon the client state that is
in effect when they are
executed.

	LecturesDisplay List
	What is Display List?
	Without display list, the standard rendering mode is immediate mode
	Retained mode
	The advantage of display list
	When to use display list?
	Case Study 1Drawing a square and viewing it from different angles.
	(1) Define a viewing perspective
	(2) Define a square
	(3) Create a Display List
	(3) Create Display List, continued…
	(4) Define Display CallBack function
	(4) Define when to invoke the display – keyboard input in this case
	Output when user clicks “X”Note: the square rotates around the X axis
	Case Study 2Use display list to draw many triangles
	(1) Define a red triangle
	(2) Call Display List in display call back
	Case Study 3 Executing Multiple Display Lists to create stroked fonts
	Create stroked fonts (1) create fonts – example of creating “A”
	Create stroked fonts (2)create display lists for fonts
	Create stroked fonts - (3) Call glCallLists() to execute display lists.
	How can there be several fonts?
	Case Study 4Using a display list for drawing different styles of lines
	Case Study 4(1) Creating display list for three different line styles
	Case Study 4(2) Calling a display list to draw three lines of different styles
	Managing Display List Indices
	How to delete a display list?
	Case Study 5What is the color of vertex? – Black or Red?
	Hierarchical Display Lists
	Case Study 6 Using a Display List for easily changing geometric parameters
	Case Study 6(1) Create a polygon display list using a hierarchical display list
	Case Study 6(2) Call display list to create the polygon
	Advantage of using hierachical display lists to create geometric objects
	Do hierarchical display lists improve memory usage or performance?
	Limitations on the nesting level of display lists.
	Display list disadvantages
	Display List cannot store all OpenGL commands
	Display List cannot store all OpenGL commands, continued …
	Display List cannot store all OpenGL commands, continued …
	Display List cannot store all OpenGL commands

