
© 2004, Tom Duff and George Ledin Jr 1

Lectures
OpenGL Primitives

By
Tom Duff

Pixar Animation Studios
Emeryville, California

and
George Ledin Jr

Sonoma State University
Rohnert Park, California

© 2004, Tom Duff and George Ledin Jr 2

OpenGL Primitives
• In OpenGL, the programmer is provided the following primitives for use in constructing

geometric objects.

• Each geometric object is described by a set of vertices and the type of primitive to be drawn.
Whether and how the vertices are connected is determined by the primitive type.

© 2004, Tom Duff and George Ledin Jr 3

OpenGL Primitives, continued (Vertex Functions)
• The command glVertex*() is used to specify a vertex. Here are some sample uses of

glVertex*():

• glVertex2s(1, 2);
• glVertex3d(0.0, 0.0, 3.1415926535898);
• glVertex4f(1.3, 2.0, -4.2, 1.0);
• GLdouble vector[3] = {3.0, 10.0 2033.0}; glVertex3dv(vector);

© 2004, Tom Duff and George Ledin Jr 4

OpenGL Primitives, continued
• All calls to glVertex*() should occur between a glBegin() and glEnd() pair.

– void glBegin (GLenum mode);

– void glEnd();

• delimit the vertices of a primitive or a group of like primitives

• Mode: Specifies the primitive or primitives that will be created from
vertices presented between glBegin and the subsequent glEnd.

• The order in which the vertices are declared is very important.

• Some primitives, when given an incorrect number of vertices, will ignore
any extra vertices.

– For example, GL_TRIANGLES only draws the triangle corresponding
to vertices 1, 2, and 3. Vertices 4 and 5 are ignored.

http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/glVertex.html
http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/glBegin.html
http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/glBegin.html

© 2004, Tom Duff and George Ledin Jr 5

OpenGL Primitives – GL_POINTS
• GL_POINTS

– Treats each vertex as a single point.

• void glPointSize(GLfloat size);

– Specify the diameter of rasterized points

• void glVertex2f(TYPE xcoordinate, TYPE ycoordinate)

– Specify the location of a vertex in 2D.

void display(void)
{
…
/* Note that in this program, world coordinate (0,0) is

the center of the screen */
/* draw 4 white points, centered at (0,0) */

glColor3f(0.0,0.0,0.0);

/* specify point to be 4 pixels thick */
glPointSize(4);
glBegin(GL_POINTS);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 6

OpenGL Primitives – GL_LINES
• GL_LINES

– Treats each pair of vertices as an independent line
segment.

• void glLineWidth(GLfloat width)

– specify the width of rasterized lines

void display(void)
{
…
/* Note that in this program, world coordinate (0,0) is the

center of the screen */

/* draw 2 white lines */
glColor3f(0.0,0.0,0.0);

glBegin(GL_LINES);

glVertex2f (-0.5, -0.5); /* draw the bottom line */
glVertex2f (0.5, -0.5);

glVertex2f (0.5, 0.5); /* draw the top line */
glVertex2f (-0.5, 0.5);

glEnd();…
}

© 2004, Tom Duff and George Ledin Jr 7

OpenGL Primitives – GL_LINE_STRIP
• GL_LINE_STRIP

– Draws a connected set of line segments
from the first vertex to the last.

void display(void)
{
…
/* Note that in this program, world coordinate

(0,0) is the center of the screen */

/* connecting 4 points from first vertex to the
last */
glColor3f(0.0,0.0,0.0);

glLineWidth(4);
glBegin(GL_LINE_STRIP);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 8

OpenGL Primitives – GL_LINE_LOOP
• GL_LINE_LOOP

– Draws a connected set of line
segments from the first vertex to
the last, then back to the first.

void display(void)
{
…
/* Note that in this program, world

coordinate (0,0) is the center of the
screen */

/* connecting 4 points with white lines
in a loop */
glColor3f(0.0,0.0,0.0);

glLineWidth(4);
glBegin(GL_LINE_LOOP);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 9

OpenGL Primitives – GL_TRIANGES
• GL_TRIANGES

– Treats each set of three vertices
as an independent triangle.

void display(void)
{
…
/* Note that in this program, world

coordinate (0,0) is the center of the
screen */

/* connecting 4 points with white lines in a
loop */
glColor3f(0.0,0.0,0.0);

/* draw only the outline of polygon */
glPolygonMode(GL_FRONT, GL_LINE);

glLineWidth(4);
glBegin(GL_TRIANGES);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);
glVertex2f (-0.5, 0.5);

glEnd();
…
}

• void glPolygonMode(GLenum face, GLenum mode)

- face: Specifies the polygons that mode applies to.
Must be GL_FRONT for front-facing polygons,
GL_BACK for back-facing polygons, or
GL_FRONT_AND_BACK for front- and back-facing
polygons.

- mode: Specifies the way polygons will be
rasterized. Accepted values are GL_POINT,
GL_LINE, and GL_FILL.

-The default is GL_FILL for both front- and back-
facing polygons.

© 2004, Tom Duff and George Ledin Jr 10

OpenGL Primitives – GL_TRIANGE_STRIP
• GL_TRIANGE_STRIP

– Draws a connected set of triangles. One triangle is defined for each
vertex presented after the first two vertices. Note: Order of points
does matter

void display(void)
{
…
/* Note that in this program, world coordinate (0,0) is the center of the screen

*/

/* connecting 3 points to form two triangles */
glColor3f(0.0,0.0,0.0);

/* draw only the outline of polygon */
glPolygonMode(GL_FRONT, GL_LINE);

glLineWidth(4);
glBegin(GL_TRIANGES_STRIP);

glVertex2f (-0.75, 0.0);
glVertex2f (-0.5, -0.5);
glVertex2f (-0.25, 0.0);

glVertex2f (0, -0.5); //create 2nd triange
glVertex2f (0.25, 0); //create 3rd triange
glVertex2f (0.5, -0.5); //create 4th triange

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 11

OpenGL Primitives – GL_TRIANGE_STRIP, continued
• GL_TRIANGE_STRIP

– Draws a connected set of triangles. One triangle is defined
for each vertex presented after the first two vertices.

– Note:
• Order of points does matter!

• If the vertices are defined clockwise, the front of the
polygon will be shown. Otherwise, the back of the
polygon will be shown.

void display(void) {
…
/* Note that in this program, world coordinate (0,0) is the

center of the screen */

/* connecting 4 points to form two triangles */
glColor3f(0.0,0.0,0.0);

/* draw only the outline of polygon */
glPolygonMode(GL_FRONT, GL_LINE);

glLineWidth(4);
glBegin(GL_TRIANGES_STRIP);

glVertex2f (-0.5, -0.5);
glVertex2f (0.5, -0.5);
glVertex2f (0.5, 0.5);

glVertex2f (-0.5, 0.5);
glEnd();

…
}

Because the vertex is defined
counter clockwise, the back of the
polygon is shown.

Therefore, this
Part of polygon is black.

© 2004, Tom Duff and George Ledin Jr 12

OpenGL Primitives – GL_TRIANGE_FAN
• GL_TRIANGE_FAN

– Draws a connected set of triangles. One triangle is defined for
each vertex presented after the first two vertices. Note: Order
of points does matter!

void display(void)
{
…
/* Note that in this program, world coordinate (0,0) is the center of the

screen */

/* connecting 4 points to form two triangles */
glColor3f(0.0,0.0,0.0);

/* draw only the outline of polygon */
glPolygonMode(GL_FRONT, GL_LINE);

glLineWidth(4);
glBegin(GL_FAN);

glVertex2f (0.0, 0.0); // create 1st triangle
glVertex2f (0.5, 0.6);

glVertex2f (0.25, 0.4);

glVertex2f (-0.25, 0.5); // create 2nd triangle
glVertex2f(-0.5, 0.3); // create 3rd triangle

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 13

OpenGL Primitives – GL_QUADS
• GL_TRIANGE_QUADS

– Treats each set of four vertices as an
independent quadrilateral. Note: Order of
points does matter!

void display(void)
{
…
/* Note that in this program, world coordinate

(0,0) is the center of the screen */

/* creating 2 quadrilaterals */
glColor3f(0.0,0.0,0.0);

glPolygonMode(GL_FRONT, GL_LINE);
glLineWidth(4);
glBegin(GL_QUADS);

glVertex2f (-0.25, -0.25);
glVertex2f (0.0, -0.25);

glVertex2f (0.0, 0.0);
glVertex2f (-0.25, 0.5);

glVertex2f (0.25, 0.25);
glVertex2f (0.5, -0.25);

glVertex2f (0.8, 0.0);
glVertex2f (0.4, 0.5);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 14

OpenGL Primitives – GL_QUAD_STRIP
• GL_TRIANGE_QUAD_STRIP

– Draws a connected set of quadrilaterals.
One quadrilateral is defined for each
pair of vertices presented after the
first pair.

void display(void)
{
…
/* Note that in this program, world coordinate

(0,0) is the center of the screen */

/* creating 2 quadrilaterals using GL_QUAD_STRIP */
glColor3f(0.0,0.0,0.0);

glPolygonMode(GL_FRONT, GL_LINE);
glLineWidth(4);
glBegin(GL_QUADS_STRIP);

glVertex2f (-0.25, 0.5);
glVertex2f (-0.25, -0.25);

glVertex2f (0.0, 0.0);
glVertex2f (0.0, -0.25);

glVertex2f (0.25, 0.5);
glVertex2f (0.25, -0.25);

glEnd();
…
}

© 2004, Tom Duff and George Ledin Jr 15

OpenGL Primitives – GL_POLYGON
• GL_TRIANGE_QUAD_STRIP

– Draws a single, concave polygon.
Vertices 1 through N define this
polygon.

void display(void)
{
…
/* Note that in this program, world coordinate

(0,0) is the center of the screen */

/* creating a six sided polygon */
glColor3f(0.0,0.0,0.0);

glPolygonMode(GL_FRONT, GL_LINE);
glLineWidth(4);
glBegin(GL_QUADS);

glVertex2f (-0.25, 0.5);
glVertex2f (-0.25, -0.25);

glVertex2f (0.0, 0.0);
glVertex2f (0.0, -0.25);

glVertex2f (0.25, 0.5);
glVertex2f (0.25, -0.25);

glEnd();
…
}

	LecturesOpenGL Primitives
	OpenGL Primitives
	OpenGL Primitives, continued (Vertex Functions)
	OpenGL Primitives, continued
	OpenGL Primitives – GL_POINTS
	OpenGL Primitives – GL_LINES
	OpenGL Primitives – GL_LINE_STRIP
	OpenGL Primitives – GL_LINE_LOOP
	OpenGL Primitives – GL_TRIANGES
	OpenGL Primitives – GL_TRIANGE_STRIP
	OpenGL Primitives – GL_TRIANGE_STRIP, continued
	OpenGL Primitives – GL_TRIANGE_FAN
	OpenGL Primitives – GL_QUADS
	OpenGL Primitives – GL_QUAD_STRIP
	OpenGL Primitives – GL_POLYGON

